CENTRO UNIVERSITÁRIO DE FORMIGA- UNIFOR-MG CURSO DE ENGENHARIA CIVIL ELVIS ELTON GOMES ANSELMI

ESTUDO DA CURVA DE ÍNDICE DE SUPORTE CALIFÓRNIA NA MISTURA DE SOLO-AGREGADO: ANALISANDO SEU COMPORTAMENTO COM DIFERENTES PORCENTAGENS DE ARGILA-ARENOSA VERMELHA

FORMIGA-MG 2015

Elvis Elton Gomes Anselmi

ESTUDO DA CURVA DE ÍNDICE DE SUPORTE CALIFÓRNIA NA MISTURA DE SOLO-AGREGADO: ANALISANDO SEU COMPORTAMENTO COM DIFERENTES PORCENTAGENS DE ARGILA-ARENOSA VERMELHA

Trabalho de conclusão de curso apresentado ao curso de Engenharia Civil do UNIFOR-MG como requisito parcial para obtenção do título de bacharel em Engenharia Civil.

A618 Anselmi, Elvis Elton Gomes.

Estudo da curva de índice de suporte Califórnia na mistura de soloagregado : analisando seu comportamento com diferentes porcentagens de argila-arenosa vermelha / Elvis Elton Gomes Anselmi. – 2015. 89 f.

Orientador: Tiago de Morais Faria Novais. Trabalho de Conclusão de Curso (Engenharia Civil) - Centro Universitário de Formiga—UNIFOR-MG, Formiga, 2015.

1. Solo-agregado. 2. BGS. 3. Índice de suporte Califórnia. I. Título.

CDD 631.433

Elvis Elton Gomes Anselmi

ESTUDO DA CURVA DE ÍNDICE DE SUPORTE CALIFÓRNIA NA MISTURA DE SOLO-AGREGADO: ANALISANDO SEU COMPORTAMENTO COM DIFERENTES PORCENTAGENS DE ARGILA-ARENOSA VERMELHA

Elvis Elton Gomes Anselmi

ESTUDO DA CURVA DE ÍNDICE DE SUPORTE CALIFÓRNIA NA MISTURA DE SOLO-AGREGADO: ANALISANDO SEU COMPORTAMENTO COM DIFERENTES PORCENTAGENS DE ARGILA-ARENOSA VERMELHA

Trabalho de conclusão de curso apresentado ao curso de Engenharia Civil do UNIFOR-MG como requisito parcial para obtenção do título de bacharel em Engenharia Civil.

BANCA EXAMINADORA

Prof. Me. Tiago de Morais Faria Novais
Orientador

Austronoficana
Prof.º Ma. Christiane Pereira Rocha Sousa
UNIFOR-MG

Prof.º Dra. Mirian Aparecida Isidro dos Santos
UNIFOR-MG

AGRADECIMENTOS

Primeiramente agradeço a Jeová por me abençoar nesta oportunidade de estudar em uma faculdade e ter a chance de me graduar. Agradeço ao Professor Tiago pela ajuda e me apoiar neste tema, pela orientação e por também ser um verdadeiro geek. Somos poucos hoje em dia.

Aos professores Giarola e Leonard, minha eterna admiração e meu mais sincero obrigado.

A minha mãe Neneca, meu pai Jaime e meu padrasto Wellington, por me apoiarem de diversas formas nessa jornada. Um agradecimento especial a minha irmã Vivian, que me apoia constantemente, de todas as maneiras que foram necessárias, te amo. A minha namorada Karyne, obrigado por sempre estar ao meu lado.

Ao meu amigo Gleison que sempre fez de tudo pra me apoiar no trabalho, e me ensinou a ser um profissional.

Ao pessoal do laboratório da Pavidez Engenharia, Rainel Gomes, Danilo Rodrigues, Emisson Santana e Fabiano Cabral, pelo auxílio com os ensaios.

Mesmo correndo risco de um indesculpável esquecimento, me senti obrigado a particularizar essas pessoas, a todas as outras que me ajudaram direta e indiretamente na realização deste trabalho, e na minha vida acadêmica, muito obrigado.

RESUMO

O solo, por ser um material de baixo custo e abundante, sempre foi para as obras

rodoviárias um delimitador e um trunfo para sua construção, o aumento na burocracia e

das leis ambientais fez com que a substituição de um solo ficasse inviável, indo à

contrapartida com o baixo custo do uso do material. O solo argiloso, dentre todos os

solos, é o mais utilizado, fazendo com que a estabilização física deste solo seja a opção

mais economicamente rentável possível. As características plásticas de um solo argiloso

precisam ser amplamente estudadas para o entendimento completo de que essa mistura

pode proporcionar. O presente trabalho visa buscar, por meio de ensaios de laboratório,

se existe uma relação entre a capacidade de carga de um material estabilizado com o

índice de plasticidade existente nele e se essa plasticidade é um agente deletério na

mistura.

Palavras-chaves: Solo-agregado; BGS; ISC.

ABSTRACT

The soil, being an inexpensive and abundant material, has always been for the road works a delimiter and an asset to its construction, the increase in bureaucracy and environmental laws caused the substitution of a soil stay unfeasible, going to counterpart with the low cost of using the material. The clay soil, of all the soils, is the most used, making the physical stabilization of a soil will be the most cost-effective possible option. The plastic characteristics of a clay soil need to be widely studied for the full understanding that this mixture can provide. The present work seeking, through laboratory tests, if there is a relationship between the load capacity of a stabilized material with the existing plasticity index it and if this plasticity is a deleterious agent into the mixture.

Keywords: Soil-aggregate, stabilization, California Bearing Ratio.

LISTA DE ABREVIATURAS

AASHTO - American Association of State Highway and Transportation Officials

BGS - Brita graduada simples

CBR - Californian bearing ratio

DNER - Departamento Nacional de Estradas e Rodovias

DNIT - Departamento Nacional de Infraestrutura de Transporte

EM - Especificações de material

ISC - Índice de Suporte Califórnia

ME - Método de ensaio

NBR - Norma Brasileira

PRO - Procedimento

LISTA DE FIGURAS

Figura 1	-	Caixa de empréstimo	31
Figura 2	-	Estoque da jazida de agregado	. 32
Figura 3	-	Amostra secando ao ar	. 33
Figura 4	-	Destorroamento da argila	. 33
Figura 5	-	Preparação da BGS	34
Figura 6	-	Granulometria lavada do solo	. 35
Figura 7	-	Granulometria lavada de material britado	35
Figura 8	-	Amostra sendo separada	36
Figura 9	-	Início do ensaio de limite de plasticidade	. 36
Figura 10	-	Moldando o cilindro de solo para o limite de plasticidade	37
Figura 11	-	Cilindro de solo com espessura de norma	37
Figura 12	-	Corte dos cilindros	. 38
Figura 13	-	Pesagem das amostras	. 38
Figura 14	-	Preparação para a ranhura	. 39
Figura 15	-	Ranhura após encontro	. 39
Figura 16	-	Separação para pesagem	40
Figura 17	-	Homogeneização de solo-agregado	40
Figura 18	-	Material homogeneizado	. 41
Figura 19	-	Início da compactação do ensaio	41
Figura 20	-	Material compactado	. 42
Figura 21	-	Pressa de CBR	42
Figura 22	-	Amostra sendo preparada para o rompimento	43
Figura 23	-	Colocação dos pesos anelares	43
Figura 24	_	Rompimento da amostra	44

LISTA DE GRÁFICOS

Gráfico 1 - Granulometria da argila vermelha	46
Gráfico 2 - Granulometria BGS	48
Gráfico 3 - Granulometria solo-agregado 70% argila 30% BGS	49
Gráfico 4 - Granulometria solo-agregado 50% argila e 50% BGS	51
Gráfico 5 - Granulometria solo-agregado 70% BGS e 30% argila	52

LISTA DE TABELAS

Tabela 1	- Leituras obtidas no extensômetro do anel em função da penetração	
	do pistão no solo e do tempo	8
Tabela 2	- Cálculo do Índice de Suporte Califórnia	8
Tabela 3	- Composição das amostras	2
Tabela 4	- Granulometria da argila vermelha	5
Tabela 5	- Granulometria BGS 4	7
Tabela 6	- Granulometria solo-agregado 70% argila 30% BGS 4	8
Tabela 7	- Granulometria solo-agregado 50% argila e 50% BGS 5	0
Tabela 8	- Granulometria solo-agregado 70% BGS e 30% argila 5	1
Tabela 9	- Limites de liquidez e plasticidade da argila vermelha 5	3
Tabela 10	- Limites de liquides e plasticidade do solo-agregado com 70% de	
	argila e 30% de BGS	4
Tabela 11	- Limites de liquidez e plasticidade de solo-agregado com 50% de	
	argila e 50% de BGS 5	5

SUMÁRIO

1	INTRODUÇÃO	13
1.1	Justificativa	13
1.2	Objetivos	13
1.2.1	Geral	13
1.2.2	Específicos	14
2	REFERENCIAL TEÓRICO	15
2.1	Solo	15
2.1.1	Análise Granulométrica	15
2.1.2	Índices de consistência (Limites de Atterberg)	16
2.1.2.1	Limite de plasticidade	16
2.1.2.2	Limite de liquidez	16
2.1.3	Descrição e classificação dos solos para fins rodoviários	16
2.1.4	Solo-agregado ou solo-brita	17
2.1.5	Classificação AASHTO/DNIT	17
2.1.6	Compactação	18
2.1.7	Índice de Suporte Califórnia (California Bearing Radio)	18
2.2	Pavimento	18
3	MATERIAIS E MÉTODOS	20
3.1	Normas e especificações técnicas	20
3.1.1	Peneiras de malhas quadradas para análise granulométrica de solos —	
	Departamento Nacional de Estradas de Rodagem (DNER) –	
	Especificações de Material (EM) 035/95	20
3.1.2	Base estabilizada granulometricamente — DNER — Especificação (ES)	
	303/97	21
3.1.3	Coleta de amostras de agregados — DNER — Procedimento (PRO)	
	120/97	22
3.1.4	Agregados – analise granulométrica – DNER – Método de Ensaio (ME)	
	083/98	22
3.1.5	Coleta de amostras deformadas de solos – DNER – PRO 003/94	23
3.1.6	Amostras de solo – preparação para ensaio de compactação e	
	caracterização – NRR 6457	23

3.1.6.1	Amostra para análise granulométrica	24
3.1.6.2	Amostra para determinação dos limites de Atterberg	24
3.1.6.3	Amostra para ensaio de compactação	24
3.1.7	Solo – Ensaio de compactação – NBR 7182	24
3.1.8	Solo – Análise granulométrica por peneiramento – DNER – ME 080/94	25
3.1.9	Solos – Determinação do limite de liquidez – DNER – ME 122/94	25
3.1.10	Solos – Determinação do limite de plasticidade – DNER – ME 082/94	26
3.1.11	Solos – Determinação do limite de plasticidade – DNER – ME 082/94	27
4	RESULTADOS ESPERADOS	30
5	METODOLOGIA	31
5.1	Classificação do estudo	31
5.2	Procedimento de coleta de dados	31
5.2.1	Solo	31
5.2.2	Material Britado (BGS)	33
5.2.3	Preparação da amostra e ensaios de caracterização	32
5.2.3.1	Análise granulométrica	34
5.2.3.2	Limites de Atterberg	35
5.2.3.3	Compactação	40
5.2.3.4	Ensaio de compressão simples – ISC	42
6	ANÁLISE DOS RESULTADOS	45
6.1	Compactação	45
6.2	Granulometria	45
6.3	Limites de Atterberg	52
6.4	Compressão simples (CBR)	56
7	CONCLUSÃO	58
	REFERÊNCIAS	60
	APÊNDICE A - Ensaios de compactação	62
	APÊNDICE B – Granulometrias	67
	APÊNDICE C - Limites Atterberg	72
	APÊNDICE D - Compressão simples - ISC	77
	ANEXO A – Classificação dos solos – HRB	87
	ANEXO B – Preparação de amostra para ensaio de caracterização	88

1 INTRODUÇÃO

Desde os primórdios, a engenharia civil e seus mestres de obras se deparam com a inconstância dos solos. Na engenharia civil, a análise dos solos sempre visa o aumento da resistência mecânica dos solos em questão, a fim de sempre serem estáveis. Com a evolução da tecnologia e com o aumento do potencial de carregamento das máquinas, neste caso físico, a estabilização dos solos deixa de ser uma tarefa simples, pois dia após dia, os esforços sobre os mesmos vêm sofrendo um aumento exponencial, fazendo com que patologias nos pavimentos sejam cada vez mais frequentes.

A caracterização dos solos, mesmo sendo uma tarefa difícil, sempre se mostrou um aliado forte e vantajoso de se ter. Estudos sobre estabilização granulométrica e aumento no ganho da resistência mecânica deixaram de ser algo exclusivo das grandes empresas para ser utilizado nas mais variadas obras. Em particular, o estudo do índice de suporte califórnia (I.S.C.) que demonstra, em forma de porcentagem, até o ponto máximo que um solo, agregado ou solo-agregado, pode resistir. A utilização de solo-agregado tem sido amplamente utilizada para corrigir certas deficiências mecânicas do solo e diminuir o custo da utilização do agregado. O trabalho a seguir visa identificar se existe uma porcentagem na qual as características plásticas do solo argiloso são passadas para a mistura de solo agregado e se sua curva de resistência I.S.C. apresenta isso em seu gráfico.

1.1 Justificativa

Este é um trabalho sobre a importância de se entender o que acontece com a mistura de solo-agregado (solo-brita) após o seu ponto máximo de resistência e se existe uma relação com a quantidade de argila existente em sua mistura.

1.2 Objetivos

1.2.1 Geral

Apresentar resultados de curva de resistência *californian bearing ratio* (CBR) da mistura de solo argiloso (solo-agregado ou solo-brita) com material britado usado em

base de pavimentos rodoviários, através de ensaios de laboratório, a fim de identificar uma variação em sua constância.

1.2.2 Específicos

O presente trabalho tem por objetivo apresentar resultados de ensaios laboratoriais de mistura de solo argiloso com material britado comprovando uma variação na curva de índice suporte Califórnia I.S.C.

- Apresentar resultados de granulometria, índices de consistência (limites de Atterberg), compressão e proporções da mistura solo-brita.
- Definir se as específicas porcentagens de argila influenciam o grau de plasticidade da mistura.
- Utilizar o ensaio de Índice de Suporte Califórnia como parâmetro entre esse grau de plasticidade e se o material for trabalhado acima do especificado em norma apresenta uma variação para menos em seus resultados.

2 REFERENCIAL TEÓRICO

2.1 Solo

Para o engenheiro civil, solo é uma reunião de partículas minerais soltas, ou cimentadas, formada pela decomposição de rochas por ação de intemperismo, com o espaço vazio entre as partículas ocupado por água e/ou ar. (CRAIG, 2004).

Geralmente num solo, convivem partículas de tamanhos diversos. Grãos de areia, por exemplo, podem estar envoltos por uma grande quantidade de partículas argilosas finíssimas, com o mesmo aspecto de uma aglomeração formada unicamente por essas partículas argilosas.

Para averiguação do tamanho dos grãos de um solo, realiza-se a análise granulométrica, que abrange duas fases: peneiramento e sedimentação. (BERNUCCI *et al.*, 2008).

2.1.1 Análise Granulométrica

Peneiramento: a amostra de solo é passada através de uma série de peneiras padrão de testes com tamanhos de malha sucessivamente menores. A massa do solo acumulada em cada peneira é determinada e a porcentagem cumulativa de massa que passa em cada peneira é calculada, na presença de partículas finas de argila no solo, a amostra deve ser lavada entre as peneiras. Este ensaio aplica-se somente a amostra de solos. (BERNUCCI *et al.*, 2008).

Sedimentação: para solos finos a leitura de densidade, feita com um densímetro, a partir da Lei de Stokes que admite que a velocidade de queda de uma partícula esférica de peso específico num fluido (hexametafosfato de sódio ou silicato de sódio) e peso específico é proporcional ao quadrado do diâmetro dessas partículas, fornece também a profundidade de queda da partícula, que é a distância entre a superfície da suspensão até o centro do bulbo do densímetro. Dessa forma a velocidade de queda da partícula pode ser calculada pela razão entre a profundidade de queda (z) e o tempo para que isso ocorra, permitindo assim a determinação do diâmetro equivalente das partículas para a fração fina do solo. (BERNUCCI et al., 2008).

2.1.2 Índices de consistência (Limites de Atterberg)

Ensaios granulométricos somente não são caracterizadores precisos de solos sob o ponto de vista da Engenharia. As frações finas dos solos correspondem por uma parcela muito importante nesse comportamento, pois quanto mais fina maior a superfície específica. Os limites inferem que um solo argiloso difere conforme o seu teor de umidade. (BERNUCCI *et al.*, 2008).

2.1.2.1 Limite de plasticidade

O termo plasticidade, em suma, descreve a capacidade do solo de sofrer deformação irreversível sem se romper ou se esfarelar. O limite de plasticidade indica o menor teor de umidade com o qual se molda um cilindro de 3 mm de diâmetro, utilizando a palma da mão. Assim que efetuado leva-se as amostras para estufa por 24 (vinte e quatro) horas a fim de obter o teor de umidade dos cilindros. (BERNUCCI *et al.*, 2008).

2.1.2.2 Limite de liquidez

Indica a porcentagem de umidade necessária para um solo ser experimentado em um equipamento chamado Casagrande, que consiste em um recipiente (prato) metálico e côncavo, preso a um pivô em sua borda, apoiado a uma base de ebonite (borracha dura) onde uma pasta do solo é colocada, fazendo uma ranhura de 13 mm com um entalhe padronizado (cinzel), conta-se a quantidade de golpes necessários para a pasta se unir. Devem ser feitas determinações repetidas até que duas determinações sucessivas forneçam o mesmo número, logo após esse processo deve-se levar as amostras para estufa a fim de obter o teor de umidade do material. (BERNUCCI *et al.*, 2008).

2.1.3 Descrição e classificação dos solos para fins rodoviários

Tanto a descrição dos solos como sua classificação exige um conhecimento de graduação e da plasticidade, Senço (2007) considera que a forma mais resumida de classificar um solo é a sua granulometria, no entanto, este parâmetro não atende suas

finalidades quanto ao uso para pavimentação por não levar em conta um fator fundamental para este tipo de atividade que é a plasticidade.

O constante crescimento dos países com clima tropical fez com que estes países desenvolvessem estudos para seus solos, observou-se que as propriedades dos solos finos não eram atendidas para a geotecnia, sendo incorporados gradativamente conceitos de pedologia e geologia para o entendimento de solos destas regiões. (BALBO, 2007).

2.1.4 Solo-agregado ou solo-brita

As características de um solo natural sozinhas, às vezes, não atendem as especificações e nuâncias de um projeto de estradas, mas o aproveitamento de um solo com certas características ou propriedades indesejáveis não deve ser descartado. O emprego de procedimentos de melhoria das características físicas do solo com a adição de agregados é largamente utilizado em muitas regiões do Brasil e em outros países de clima tropical úmido. (NOGAMI, 1992 apud BALBO, 2007)¹. A adição de agregados granulometricamente estabilizado com solo de comportamento não laterítico quando se busca uma melhoria de resistência ao cisalhamento, por exemplo, é vantajosa uma dosagem com o mínimo de solo possível, para as características mecânicas dos agregados prevaleçam, sendo assim, requerem um estudo contínuo e intermitente para serem analisadas as vantagens econômicas e mecânicas da mistura. (BALBO, 2007).

2.1.5 Classificação AASHTO/DNIT

A classificação mais empregada no Brasil e a mais utilizada mundialmente é a classificação da *American Association of State Highway and Transportation Officials* (AASHTO) regulamentada no Brasil pelo Departamento Nacional de Infraestrutura de Transporte (DNIT). Neste sistema os solos são classificados sob os grupos A-1 à A-7, sendo que os solos de materiais granulares são os A-1, A-2 e A-3 dos quais 35% das partículas passam pela peneira nº 200, os demais grupos A-4, A-5, A-6 e A-7 que

¹ NOGAMI, J. S. **Metodologia MCT e suas aplicações em obras viárias**. São Paulo: Escola Politécnica da Universidade de São Paulo, 1992. Notas de aula da disciplina PTR-786.

,

passam mais do que 35% na peneira nº 200 são na maioria das vezes considerados siltes e materiais semelhantes a argilas. (DAS, 2007).

2.1.6 Compactação

Pode-se entender de compactação de solo como um aumento de densidade do material reduzindo seus vazios, comprimindo-os por meios mecânicos. Ralph R. Proctor (1894 – 1962), em 1933, no estado da Califórnia observou que a densidade atingida no solo era proporcional ao seu grau de umidade. Obter a maior massa específica aparente possível num solo por meio de aplicação de energia mecânica pressupõe em obter a maior quantidade de partículas sólidas por unidade de volume, causando assim o aumento da resistência do solo. (SENÇO, 2007).

2.1.7 Índice de Suporte Califórnia (Californian Bearing Ratio)

Para o dimensionamento de estruturas de pavimentos no Brasil o parâmetro de caracterização mecânica mais utilizada é o Índice de Suporte Califórnia, com abreviatura de ISC em português e CBR em inglês, com o intuito de avaliar o potencial de ruptura do subleito no estado da Califórnia no final da década de 20, uma vez que era o defeito mais frequente observado na época. (PORTER, 1950). Na época que o ensaio foi desenvolvido foram selecionados os melhores materiais granulares de bases para pavimentos, sendo obtido por meio de ensaio penetrométrico no laboratório o valor de referência ou padrão, que foi estabelecido em 100%, assim, todos os materiais correspondem a um valor de porcentagem, representando o quão melhor ou pior é sua resistência no ensaio ISC por referência a um "material padrão". (BERNUCCI *et al.*, 2008).

2.2 Pavimento

É uma estrutura de múltiplas camadas estabelecidas em projeto, variando de espessura de acordo com a necessidade, construída sobre a superfície final de terraplenagem, destinada a resistir a esforços de tráfego de veículos e do clima,

distribuí-las minoradas no subleito estratal, e dar condições de conforto e segurança de rolamento. (BERNUCCI *et al.*, 2008).

2.3 MATERIAIS E MÉTODOS

2.4 Normas e especificações técnicas

Neste item irão ser descritas as normas e especificações técnicas que melhor definem o estudo de solos para a confecção de um solo granulometricamente estabilizado com agregados, garantindo um preenchimento dos vazios a fim de prezar pela resistência mecânica e uma melhor análise laboratorial.

2.4.1 Peneiras de malhas quadradas para análise granulométrica de solos – Departamento Nacional de Estradas de Rodagem (DNER) – Especificações de Material (EM) 035/95

Esta norma fixa as condições gerais exigíveis para peneiras de malhas quadradas que tem por objetivo à análise granulométrica dos solos, possuindo as seguintes características:

- a) Peneira para ensaio: instrumento formado por um meio de peneiramento rigidamente fixado no meio de uma armação indeformável, e que se destina à análise granulométrica de sistemas dispersos.
- **b**) Meio de peneiramento: superfície metálica que possui aberturas no formado regular e dimensões uniformes distribuídas homogeneamente em sua área livre.
- c) Tela de fios tecidos: meio de peneiramento compostos por fios dispostos por trama e urdidura, que, entrelaçados ortogonalmente, formam malhas de seção quadrada e de dimensões uniformes.
- **d)** Malha: superfície quadrada entre fios adjacentes cuja separação caracteriza sua abertura.
- e) Abertura: menor separação, medida no centro da malha, entre dois fios sucessivos.
- **f**) Abertura nominal: abertura ideal que caracteriza a designação de uma peneira para ensaio.
- **g**) Abertura média: abertura decorrente da média aritmética calculada com base na medição de um determinado número de malhas, em pelo menos duas áreas

- da tela, escolhidas aleatoriamente, para verificação das tolerâncias dimensionais.
- h) Caixilho: componente da peneira destinado a ser armação da tela e parede que limita lateralmente o espaço de peneiramento. Os caixilhos redondos devem ser metálicos, com parede interna lisa e sem emendas, contendo uma chapa metálica de espessura mínima de 8 mm. Os de formato quadrado podem ser de metal ou madeira resistente, sendo de suficiente rigidez para não distorcer a tela quando em uso.

2.4.2 Base estabilizada granulometricamente – DNER – Especificação (ES) 303/97

Esta norma regulariza os métodos a serem empregados na elaboração do material a ser empregado na execução de uma base granulometricamente estabilizada, tendo que apresentar as seguintes características:

- a) Quando submetidos aos ensaios:
- DNER ME 080/94 Solos Analise granulométrica por peneiramento.
- DNER ME 082/94 Solos Determinação do limite de plasticidade.
- DNER ME 122/94 Solos Determinação do limite de liquidez.

Deverão possuir composições granulométricas satisfatórias a uma das faixas do quadro a seguir de acordo com o nº N de tráfego do DNER.

- A fração que passa na peneira nº 40 deverá apresentar limite de liquidez inferior ou igual a 25% e índice de plasticidade inferior ou igual a 6%.
- A porcentagem do material que passa na peneira nº 200 não deve ultrapassar 2/3 da porcentagem que passa na peneira nº 40.
- **b)** Quando submetido aos ensaios:
- Norma Brasileira (NBR) 7182 SOLO Ensaio de compactação
- DNER ME 049/94 SOLOS Determinação do índice Califórnia utilizando amostras não trabalhadas.
- O Índice de Suporte Califórnia (ISC), deverá ser superior a 60% e a expansão máxima será de 0,5% com energia de compactação intermediário.

O agregado retido na peneira nº 10 deverá ser constituído de partículas duras
e resistentes, isentas de fragmentos moles, alongados ou achatados, estes
isentos de matéria animal ou vegetal ou outra substância que possa reagir com
oxigênio ou água e/ou não esteja dimensionada ou projetada.

2.4.3 Coleta de amostras de agregados – DNER – Procedimento (PRO) 120/97

Esta norma fixa o procedimento de coleta de amostras de agregados para análise em laboratório com emprego de agregado miúdo retirado em pilhas de estocagem. As amostras devem ser obtidas de vários pontos da pilha, desde a crista até a base, perfazendo um total de 20 kg. As amostras devem ser retiradas com pá ou enxada conforme a seguinte indicação.

A superfície da área da carga deve ser dividida em seis subáreas, formadas
por interseção de uma linha mediana, traçada no sentido do comprimento do
montante, com duas linhas transversais que a divida em partes iguais. Retirar
de uma só vez amostras da superfície das subáreas;

2.4.4 Agregados – analise granulométrica – DNER – Método de Ensaio (ME) 083/98

Esta norma fixa o procedimento de análise granulométrica de agregados para análise em laboratório com emprego de agregado miúdo, obedecendo ao prescrito na DNER – PRO 120/97.

O ensaio consiste em:

- a) Secar uma porção da amostra em estufa (110±5) °C, por 24 horas, e esfriar a temperatura ambiente e determinar sua massa total.
- **b**) Encaixar as peneiras, previamente limpas, no agitador de peneiras, de modo a formar um único conjunto de peneiras, com abertura de malha em ordem crescente da base para o topo, com um fundo fechado adequado para o conjunto.
- c) Colocar a quantidade previamente pesada da amostra sobre a peneira superior do conjunto, de modo a evitar formar camada espessa de material sobre qualquer uma das peneiras.

- Realizar o peneiramento da série de peneiras especificada ao caso pertinente, pela agitação mecânica do conjunto.
- **d**) O peneiramento deve ser continuado até que não mais que 1% da massa total da amostra passe em qualquer peneira, durante 1 (um) minuto.
- e) Em sequencia, pesar, com aproximação de 0.1% sobre a massa da total, o material retido em cada peneira, juntamente com a porção que porventura tenha ficado preso nas malhas, que é retirada com uma escova apropriada.
- f) O somatório de todas as massas retidas (item (f)) não deve diferir de mais de 0.3% da massa seca inicialmente introduzida no conjunto de peneiras.
- g) Caso não haja agitador de peneiras mecânico, a agitação manual de cada peneira de ser realizada, inicialmente na peneira de maior abertura e subsequentemente nas demais da série (ordem decrescente), sendo que sua agitação deve ser feita em movimentos laterais e circulares alternados, tanto no plano horizontal quanto no vertical e inclinado.
- h) Os cálculos devem ser obtidos da porcentagem de cada peneira em comparação com a total inicial da amostra seca para realização de um gráfico.

2.4.5 Coleta de amostras deformadas de solos – DNER – PRO 003/94

Esta norma fixa o modo no qual o procedimento de coleta de amostras de solos deve ser realizado para analise em laboratório. Em frente ao local a ser prospectado, é colocado uma lona onde serão depositadas as amostras coletadas a fim de extrair qualquer material de procedência orgânica, posteriormente, as amostras são colocadas em sacos plásticos. As quantidades mínimas das amostras para serem realizados os ensaios de caracterização e de compactação de ISC devem ser respectivamente, de 10 kg a 60 kg.

2.4.6 Amostras de solo — preparação para ensaio de compactação e caracterização — NBR 6457

Esta norma normatiza o método para a preparação de amostras de solos para ensaios de caracterização e compactação realizados em laboratório. Inicialmente devese colocar a amostra para ser seca ao ar, ou por aparelho secador, desde que não

ultrapasse a 60°C, para que não haja mudanças nas características do solo. Deve-se também eliminar os torrões da amostra com um almofariz, tomando cuidado para não diminuir o tamanho natural das partículas, para posteriormente ser peneirado pela peneira 2,0 mm, devendo ficar retido somente os grãos maiores que a abertura da malha da peneira.

2.4.6.1 Amostra para análise granulométrica

Tomar uma fração da amostra obtida da parcela seca ao ar e passar pela peneira 76 mm, desprezando a parcela eventualmente retida. De a parcela passante tomar 1 (um) quilo e efetuar o ensaio.

2.4.6.2 Amostra para determinação dos limites de Atterberg

Tomar uma fração da amostra obtida da parcela seca ao ar e passar na peneira 0.42 mm, de modo a se ter cerca de 200 (duzentos) g de material passado. O material assim obtido constitui a amostra a ser ensaiada. Para ambos os ensaios (limite de liquidez e plasticidade) deve-se efetuar o mesmo processo.

2.4.6.3 Amostra para ensaio de compactação

Com a utilização de um repartidor ou de um quarteador de amostras, reduzir a quantidade de material até se obter uma amostra representativa em quantidade suficiente para a realização do ensaio (cerca de 35 (trinta e cinco) quilos).

2.4.7 Solo – Ensaio de compactação – NBR 7182

Esta norma prescreve o método para determinar a relação entre umidade e massa específica aparente seca de solos quando compactados, de acordo com os processos específicados.

Para a execução deste ensaio foi adotado que será sem reuso do material utilizado em cada cilindro de compactação e energia intermediária (26 (vinte e seis) golpes por camada). Tomar a amostra seca ao ar e quarteada, e separa-la em 5 (cinco)

porções de 7 (sete) quilos, respeitando a porcentagem de argila e de material britado, ressalvando-se que a primeira porção deve estar com teor de umidade em torno de 5% ± 2, abaixo da umidade ótima presumível, a segunda com umidade 2% ± 2, superior à primeira e assim por diante para a construção de um gráfico de densidades e umidades.

2.4.8 Solo – Análise granulométrica por peneiramento – DNER – ME 080/94

Esta norma técnica define o procedimento de execução do método de ensaio de análise granulométrica por peneiramento. As peneiras a serem utilizadas são as 50 - 38 - 25 - 19 - 9.5 - 4.8 - 2.0 - 1.2 - 0.6 - 0.42 - 0.30 - 0.15 e 0.075 mm, inclusive tampa e fundo. A amostra de solo previamente seca ao ar e destorroada deve ser repartida em um quarteador até a uma amostra representativa de 1500 (um mil e quinhentos) g para solos argilosos, sendo este peso anotado como peso total da amostra seca ao ar.

Coloca-se a amostra representativa demonstrada por quarteamento anteriormente em um recipiente cilíndrico com capacidade de 5 litros, munido de bico vertedor para desagregar por lavagem a amostra de solo, com água esfregando-a com as mãos a fim de desagregar os torrões de solo ainda existentes. Verte-se a amostra com água de lavagem através das peneiras 2,0 mm e de 0,075, colocadas uma sobre a outra, tomando-se precaução de remover todo o material do recipiente com um jato de água. À peneira 2,0 mm é utilizada apenas como precaução para a malha da peneira 0,075 mm não sofra nenhum dano em sua malha. Todo este material depois de limpo deve ser colocado em uma cápsula de porcelana de no mínimo 500 ml e secada em estufa a 110±5°C por mais ou menos 24 horas ou até apresentar constância de peso. Após a secagem completa do material as peneiras a serem utilizadas para o término do ensaio são as referidas acima, calcula-se a percentagem em relação ao peso da amostra total seca.

2.4.9 Solos – Determinação do limite de liquidez – DNER – ME 122/94

Esta norma técnica contém o método de referência para a determinação do limite de liquidez de solos.

O ensaio se consiste em pegar uma amostra do material seco ao ar livre de material orgânico e de material acima de 2,0 mm, e fazer sua homogeneização com

auxílio de espátula por 15 a 30 minutos, após a homogeneização deve-se colocar uma porção desta mistura no aparelho normatizado (Casagrande) e com o auxílio de um cinzel produzir uma canelura de 1 (um) centímetro de espessura na massa de solo segundo o plano de simetria do aparelho, girar a manivela do aparelho até que as duas bordas da canelura se unam na extensão de 1 (um) centímetro, quando isso ocorrer deve-se transferir uma porção para recipientes adequados e fazer a pesagem imediata, levando-o a seguir para estufa a 110±5°C para determinar a umidade.

Os valores de umidade e número de golpes são representados em um sistema de eixos ortogonais, no qual, na ordenada escala logarítmica, são representados os números de golpes e na abscissa, em escala aritmética, os correspondentes teores de umidade, pelos pontos lançados será traçada uma reta, tão próxima quanto possível, de pelo menos 3 (três) pontos, o resultado, expresso em porcentagem, é aproximado para o número inteiro mais próximo.

2.4.10 Solos – Determinação do limite de plasticidade – DNER – ME 082/94

Esta norma técnica prescreve o método de execução do ensaio de laboratório para determinação do limite de plasticidade de solos, junto com sua aparelhagem e condições para obtenção do resultado.

Para a realização do ensaio separam-se cerca de 50g da amostra previamente seca ao ar e sem material orgânico ou maior que 2,0 mm. Coloca-se a amostra em uma cápsula de porcelana de aproximadamente 500 ml e se junta água destilada em quantidade suficiente para a obtenção de uma massa plástica, prezando pela homogeneização da massa. Em uma placa esmerilhada, separam-se cerca de 20 g dessa massa, obtida na descrição acima, modelando-a na forma elipsoidal. Rola-se essa massa entre os dedos e a face esmerilhada da placa de vidro, com pressão suficiente, a fim de moldá-la na forma de um cilindro comparador de 3 mm de diâmetro uniforme, o número de rolagens deverá estar compreendido entre 80 e 90 por minuto, considerando-se uma rolagem como movimento de mão para frente e mão para trás, retornando ao ponto de partida. Assim que feito os cilindros de solo separa-se cerca de 5 exemplos desses cilindros e pesa-se, após a pesagem serem levados a uma estufa de secagem a 110±5°C para obtenção da umidade, o limite de plasticidade é a média de umidade entre esses cilindros de solo.

2.4.11 Solos – Determinação do limite de plasticidade – DNER – ME 082/94

Esta norma técnica, fixa as condições, e aparelhagens a serem utilizadas para a execução do ensaio de laboratório, em amostras não trabalhadas.

O termo amostras não trabalhadas significa a não reutilização da amostra já ensaiada para um novo ensaio. O ensaio consiste em utilizar os 3 (três) pontos de umidade e densidade ótima obtidos no ensaio de compactação orquestrados sob a norma NBR 7182. Após a realização do ensaio de compactação toma-se os 3 (três) pontos ótimos e retira-se o disco espaçador da amostra, e com os moldes invertidos devem ser fixados nos respectivos pratos-base perfurados. No corpo de prova de maior densidade deverá ser adaptado, na haste de expansão, um extensômetro fixo ao tripé porta-extensômetro, colocado na borda superior do cilindro, e deverão ser anotadas de 24 (vinte e quatro) em 24 (vinte e quatro) horas, em relação a altura inicial do corpo-de-prova, em cada corpo de prova deverá ser deixado dois pesos anelares que equivalem ao peso do pavimento. Os corpos-de-prova deverão ser imersos em água por 96 (noventa e seis) horas.

Terminando o período de embebição os corpos-de-prova estarão prontos para a penetração. O ensaio de penetração deverá ser realizado em uma prensa chamada "Prensa de C.B.R.", onde se é feito o assentamento do pistão de penetração no solo onde será aplicada uma carga de aproximadamente 4,5 kg (quatro e meio) controlada pelo ponteiro do extensômetro do anel dinamométrico. Aciona-se a manivela da prensa a uma velocidade de 1.27 mm/min (0.05pol/min). Conforme a TAB. 1 a seguir, cada leitura do extensômetro do anel dinamométrico é função de uma penetração do pistão no solo mediante ao tempo especificado para o ensaio.

Tabela 1 – Leituras obtidas no extensômetro do anel em função da penetração do pistão no solo e do tempo

Tempo	oo Penetração		
min	pol	mm	Leitura do extensômetro do anel (mm)
0,5	0,025	0,635	-
1,0	0,050	1,270	-
1,5	0,075	1,905	-
2,0	0,100	2,540	-
3,0	0,150	3,810	-
4,0	0,200	5,080	-
6,0	0,300	7,620	-
8,0	0,400	10,160	-
10,0	0,500	12,700	-

Fonte: O autor, 2015

Tabela 2 - Cálculo do Índice de Suporte Califórnia

	Penet	ração	Pressão	Leituras no	Molo Pres		ISC
Tempo em minutos		T	padrão			1	150
•	mm	pol	kg/cm ²	extensômetro mm	Calculada kg/cm²	Corrigida kg/cm²	%
0,5	0,63	0,025	-				
1	1,27	0,050	-				
1,5	1,90	0,075	-				
2	2,54	0,100	70				
3	3,81	0,150	-				
4	5,08	0,000	105				
6	7,63	0,300	132				
8	10,16	0,400	161				
10	12,70	0,500	182				

Fonte: DNER – ME 049/94

As colunas apresentadas na TAB.2 indicam:

- a) Coluna 1 tempo;
- b) Coluna 2 penetração ocorrida no tempo especificado;
- c) Coluna 3 pressão padrão, que é a correspondente a um determinado tipo de pedra britada que apresenta Índice de Suporte Califórnia de 100%;
- d) Coluna 4 leituras do extensômetro do anel dinamométrico;
- e) Coluna 5 pressão corrigida
- f) Coluna 6 o Índice de Suporte Califórnia (I.S.C).

A correção pode ser obtida pela seguinte fórmula:

ISC= <u>pressão calculada ou pressão corrigida</u> x 100 Pressão padrão

Adotando-se o maior dos valores entre as penetrações 2.54 mm e 5.08 mm.

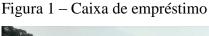
3 RESULTADOS ESPERADOS

Espera-se encontrar evidências de que a mistura de solo argiloso com material britado, não seja profícua, a não ser que utilizada em ambientes com peso controlado (balanças), pois a carga elevada de caminhões e carretas além de danificar o pavimento, forçará a argila a agir de modo plástico dentro da mistura agilizando o processo de desgaste e gerando patologias variadas.

4 METODOLOGIA

4.1 Classificação do estudo

Este estudo teve como propósito analisar específicas porcentagens de argila adicionada em material britado, para entender se suas características plásticas são passadas para a mistura.


A pesquisa foi realizada de maneira quantitativa, as amostras foram coletadas em campo e preparadas em laboratório e os resultados analisados por meio de gráficos.

4.2 Procedimento de coleta de dados

4.2.1 Solo

O solo escolhido foi coletado nas imediações da BR 354 ao lado do KM 58, onde funciona uma caixa de empréstimo, utilizada pela prefeitura, de acordo com a norma DNER – PRO 003/94, classificado visualmente como argila arenosa vermelha, e classificado por meio de ensaios como solo A-7-5, pela tabela *Highway Research Board* (HRB) de classificações de solos (FIG.1).

A coleta de dados resume-se a preparação da amostra, ensaios de granulometria, limites de Atterberg, compactação e de índice de suporte Califórnia.

Fonte: O autor, 2015.

4.2.2 Material Britado - BGS

A coleta do material britado foi efetuada aplicando as recomendações da norma técnica DNER – PRO 120/97. Este material é proveniente de uma mineradora da região de Arcos/MG, extraído de uma jazida de calcário pertencente à mineradora (FIG.2).

Figura 2 – Estoque da jazida de agregado

Fonte: O autor, 2015.

4.2.3 Preparação da amostra e ensaios de caracterização

Para esta parte do processo foram ensaiados cinco conjuntos de amostras, sendo as amostras de argila vermelha, conforme mostram as FIG.3 e FIG.4, e de brita graduada simples (BGS) demonstrada pela FIG.5, como comparativo entre as amostras de solo-agregado, explicitadas na TAB.3.

Tabela 3 – Composição das amostras

Ensaio	Mistura	Energia (golpes por camada)		
1	Argila arenosa vermelha	18		
2	Brita graduada simples	55		
3	70% argila 30% BGS	55		
4	50% argila 50% BGS	55		
5	30% argila 70% BGS	55		
		1		

Fonte: O autor, 2015

Figura 3 – Amostra secando ao ar

-

Fonte: O autor, 2015.

Figura 4 – Destorroamento da argila

Fonte: O autor, 2015.

Figura 5 – Preparação da BGS

4.2.3.1 Análise granulométrica

A análise granulométrica foi imprescindível para a confecção das amostras de brita graduada simples, pois o material escolhido possuía muito material considerado como brita 2, que possui espessura variando entre 19mm e 32mm, analisadas pelo método do paquímetro, que foram retiradas da mistura a fim de deixar a amostra mais homogênea e fácil de trabalhar. A análise granulométrica do solo não demonstrou nenhuma variação e dificuldade, inclusive as amostras de solo-agregado.

Depois de realizada a mistura na qual seriam realizados os ensaios de compactação, foram feitas as análises granulométricas, por via lavada, de todas as amostras ensaiadas (FIG. 6 e FIG.7).

Figura 6 – Granulometria lavada do solo

Figura 7 – Granulometria lavada de material britado

Fonte: O autor, 2015.

4.2.3.2 Limites de Atterberg

Para a caracterização exata e completa de um solo, de acordo com a norma DNER – ME 041/94, deve ser feito os limites de atterberg que se resumem principalmente no limite de liquidez (NBR 6459) e no limite de plasticidade (NBR

7180). As FIG. 8 a 16 demonstram o processo de execução de ensaio dos limites de liquidez e plasticidade.

Figura 8 – Amostra sendo separada

Fonte: O autor, 2015.

Figura 9 – Início do ensaio de limite de plasticidade

Figura 10 – Moldando o cilindro de solo para o limite de plasticidade

Figura 11 – Cilindro de solo com espessura de norma

Figura 12 – Corte dos cilindros

Figura 13 – Pesagem das amostras

Figura 14 – Preparação para a ranhura

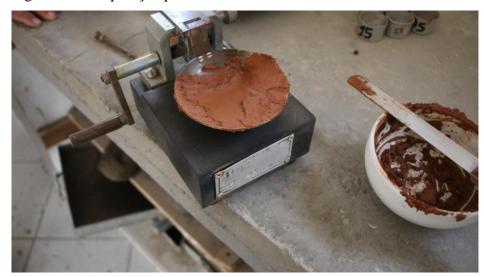


Figura 15 – Ranhura após encontro

Figura 16 – Separação para pesagem

4.2.3.3 Compactação

Para o ensaio de compactação foram ensaiadas 25 amostras, dentre as amostras 5 eram de brita graduada simples e 5 de material argiloso para efeito de comparação com os resultados da compactação do solo-agregado, preparadas de acordo com a NBR 6457, e executadas de acordo com a NBR 7182. As FIG.17 a 20 demonstram o processo de compactação do ensaio de uma amostra.

Figura 17 – Homogeneização de solo-agregado

Figura 18 – Material homogeneizado

Figura 19 – Início da compactação do ensaio

Figura 20 – Material compactado

4.2.3.4 Ensaio de compressão simples - ISC

O ensaio consiste na utilização dos 3 pontos de umidade ótima utilizados e caracterizados no ensaio de compactação, seguindo as recomendações da norma DNER – ME 049-94. As FIG.21 a 24 o processo de compressão simples ISC.

Figura 21 – Prensa de CBR

Figura 22 – Amostra sendo preparada para o rompimento

Figura 23 – Colocação dos pesos anelares

Figura 24 – Rompimento da amostra

5 ANÁLISE DOS RESULTADOS

6.1 Compactação

No ensaio de compactação as amostras de argila pura e de material britado puro foram compactadas a fim de estabelecerem uma relação entre suas densidades e para servirem de comparação para as amostras de solo-agregado e suas porcentagens.

O processo mais moroso se mostrou ser o de preparação das amostras de BGS para a mistura com o solo, todo o material britado foi cuidadosamente extraído do estoque e de uma única vez, para não haver diferenças entre as amostras. As planilhas completas estão no Apêndice A.

6.2 Granulometria

O ensaio de granulometria se mostrou coerente com as porcentagens adicionadas de material britado, mostrando a eficácia da confecção de todas as amostras com uma única extração de material dos montes. Os resultados estão no Apêndice B.

Tabela 4 – Granulometria da argila vermelha

Pr	eparação o	la Amostra		Umidade Hi	groscó	pica
Amost	tra Total		Equivalente de	Capsula	n°	6
Peso Amostra Total Úmida	g	2.000,0	areia	Cap.+ Solo + Água	g	511,88
Retido acima da # Nº 10	g	0,0		Capsula + Solo	g	469,68
Passando # № 10 Úmida	g	2.000,0		Peso Capsula	g	11,88
Passando # Nº 10 Seco	g	1.831,2		Peso da Água	g	42,20
Amostra Total Seca	g	1.831,2		Peso Solo Seco	g	457,80
Peso Amostra # Nº	σ	200,0		Umidade	%	9,2
10 Úmida	g	200,0	Peso Amost	ra # Nº 10 Seca	g	183,1

Peneiramento de Material

		Mater	ial Retido		RESUMO	
			Porcentagem	Į.	KLSOWIO	
Peneira	Peso em (g.)	Amostra total	Acumulada	Que passa da amostra total	Pedregulho % retida acima da # Nº 4	0
2 pol	0,0	0,00	0,00	100,0	Areia Grossa # N° 4 à # N° 10	0
1 pol	0,0	0,00	0,00	100,0	Areia Média # N° 10 à # N° 40	4
3/8 pol	0,0	0,00	0,00	100,0	Areia Fina # N° 40 à # N° 200	16
Nº 4	0,0	0,00	0,00	100,0	Silte + Argila passando na # Nº 200	80
Nº 10	0,0	0,00	0,00	100,0	TOTAL %	100
N° 40	7,3	3,99	96,01	96,0	% de Areia Grossa, Média e Fina	20
N° 200	28,8	15,73	80,29	80,3	Faixa da AASHO	F. F

Gráfico 1 - Granulometria da argila vermelha

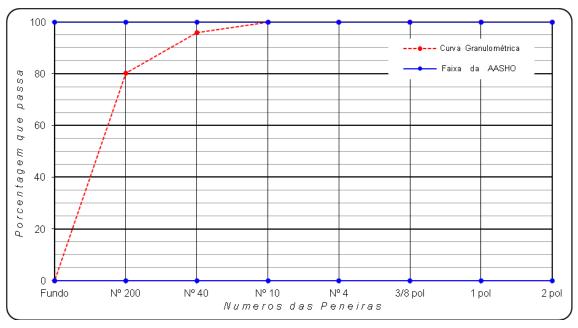


Tabela 5 – Granulometria BGS

Pre	Preparação da Amostra					Umidade Higroscópica			
Amosti	Equivalente	Capsula	n°	5					
Peso Amostra Total Úmida	g	2.000,0	de areia	Cap.+ Solo + Água	g	100,00			
Retido acima da # Nº 10	g	1.427,1		Capsula + Solo	g	99,20			
Passando # Nº 10 Úmida	g	572,9		Peso Capsula	g	14,67			
Passando # Nº 10 Seco	g	567,5		Peso da Água	g	0,80			
Amostra Total Seca	g	1.994,6		Peso Solo Seco	g	84,53			
Peso Amostra # Nº 10	σ	200,0		Umidade	%	0,9			
Úmida	g	200,0	Peso Amost	ra # Nº 10 Seca	g	198,1			

Peneiramento de Material

		Materia	al Retido		RESUMO		
			Porcentagem		RESCIVIO		
Peneira	eneira			Que passa			
Telletta	Peso em (g.)	Amostra	Acumulada	da	Pedregulho % retida	49	
		total	Acumulada	amostra	acima da # Nº 4	49	
				total			
2 pol	0,0	0,00	0,00	100,0	Areia Grossa # N° 4 à	23	
2 por	0,0	0,00	0,00	100,0	# Nº 10	23	
1 pol	0,0	0,00	0,00	100,0	Areia Média # Nº 10	13	
i poi	0,0	0,00	0,00	100,0	à # N° 40		
3/8 pol	310,7	15,58	15,58	84,4	Areia Fina # N° 40 à	4	
з/о рог	310,7	15,50	15,50	01,1	# N° 200		
N° 4	665,8	33,38	48,96	51,0	Silte + Argila passando	11	
11 1	003,0	33,30	10,50	31,0	na # Nº 200	11	
Nº 10	450,6	22,59	71,55	28,5	TOTAL %	100	
N° 40	90,5	45,69	54,31	15,5	% de Areia Grossa,	40	
11 10	70,5	15,07	31,31	10,0	Média e Fina	10	
N° 200	30,3	15,29	39,02	11,1	Faixa da AASHO	FAIXA	
	30,3	15,27	37,02	11,1	Taina da Tirisiio	С	

Gráfico 2 - Granulometria BGS

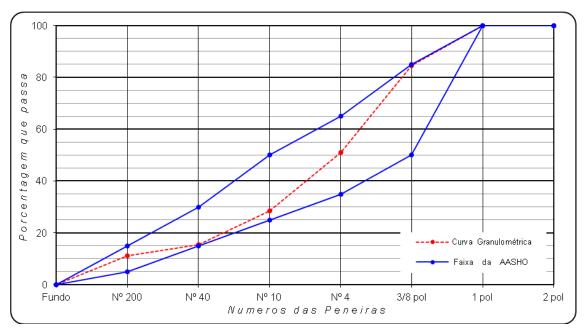


Tabela 6 – Granulometria solo-agregado 70% argila 30% BGS

						1		
	Pre	paração da	Amostra			Umidade H	Iigrosc	ópica
	Amost	ra Total				Capsula	n°	5
	mostra Total Ímida	g	2.000,0			Cap.+ Solo + Água		204,15
Retido a	cima da # N° 10	g	248,2			Capsula + Solo	g	189,76
	do # Nº 10 Ímida	g	1.751,8			Peso Capsula	g	14,93
Passando	# Nº 10 Seco	g	1.618,6			Peso da Água	g	14,39
Amostr	a Total Seca	g	1.866,8			Peso Solo Seco	g	174,83
Peso Ame	ostra # Nº 10	_	200.0			Umidade	%	8,2
ť	Ímida	g	200,0	Peso Amostra # Nº 10 Seca			g	184,8
			Peneiramento	de Material			<u> </u>	
Material Retido Peneira Porcentagem				RESUMO				
	Peso em (g.)	Amostra			Pedregulho % retida		tida	8

		total		da	acima da # Nº 4	
				amostra		
				total		
2 pol	0,0	0,00	0,00	100,0	Areia Grossa # N° 4 à # N° 10	6
1 pol	0,0	0,00	0,00	100,0	Areia Média # Nº 10 à # Nº 40	28
3/8 pol	43,1	2,31	2,31	97,7	Areia Fina # N° 40 à # N° 200	9
Nº 4	99,7	5,34	7,65	92,3	Silte + Argila passando na # Nº 200	50
Nº 10	105,4	5,65	13,30	86,7	TOTAL %	100
N° 40	58,7	31,77	68,23	59,2	% de Areia Grossa, Média e Fina	42
N° 200	19,8	10,71	57,52	49,9	Faixa da AASHO	F. F

Gráfico 3 - Granulometria solo-agregado 70% argila 30% BGS

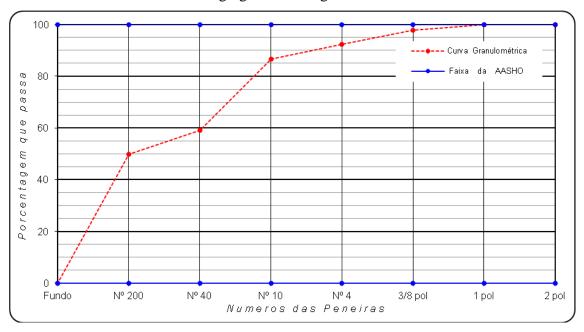


Tabela 7 – Granulometria solo-agregado 50% argila e 50% BGS

	Pre	paração da	Amostra			Umidade l	Higroso	ópica
	Amost	ra Total		Equivalent	te	Capsula	n°	5
	mostra Total Ímida	g	2.000,0	de areia		Cap.+ Solo + Água		514,93
Retido a	cima da # Nº 10	g	593,3			Capsula + Solo	g	504,43
	do # Nº 10 Úmida	g	1.406,7			Peso Capsula	g	14,93
Passando	# Nº 10 Seco	g	1.377,2			Peso da Água	90	10,50
Amostr	a Total Seca	g	1.970,5			Peso Solo Seco		489,50
Peso Amo	ostra # Nº 10	a	200,0			Umidade	%	2,1
Ţ	Ímida	g	200,0	Peso Am	osti	ra # Nº 10 Seca	g	195,8
			Peneiramento	de Material				
		Materia	al Retido			RESU	ЈМО	
			Porcentagem					
Peneira	Peso em (g.)	Amostra total	Acumulada	Que passa da amostra total		Pedregulho % retida acima da # Nº 4		20
2 pol	0,0	0,00	0,00	100,0	A	areia Grossa # Nº Nº 10	'4à#	10
1 pol	0,0	0,00	0,00	100,0	A	Areia Média # Nº Nº 40	10 à #	21
3/8 pol	94,0	4,77	4,77	95,2	A	reia Fina # N° 40 200	à # Nº	8
N° 4	302,5	15,35	20,12	79,9		Silte + Argila pas na # N° 200		41

30,11

69,36

58,32

9,99

30,64

11,03

69,9

48,5

40,8

TOTAL %

% de Areia Grossa,

Média e Fina

Faixa da AASHO

100

39

F. F

Fonte: O autor, 2015.

196,8

60,0

21,6

Nº 10

Nº 40

Nº 200

100 Curva Granulométrica Faixa da AASHO Porcentagem que passa 80 40 20 0 Nº 200 Fundo Nº 40 Nº 10 Nº 4 3/8 pol 1 pol 2 pol Numeros das Peneiras

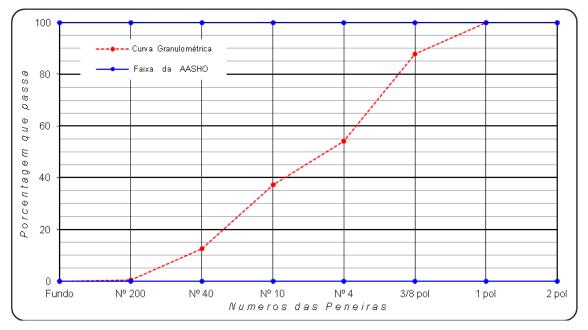

Gráfico 4 - Granulometria solo-agregado 50% argila e 50% BGS

Tabela 8 – Granulometria solo-agregado 70% BGS e 30% argila

	Pre	paração da	Amostra			Umidade H	ligroscó	pica
	Amost	ra Total		Equivalente de areia		Capsula n		4
	mostra Total Ímida	g	2.000,0			Cap.+ Solo + Água		216,29
Retido a	cima da # N° 10	80	1.211,7			Capsula + Solo	g	199,06
	do # Nº 10 Úmida	ορ	788,3			Peso Capsula	g	15,22
Passando	# Nº 10 Seco	g	720,8			Peso da Água	g	17,23
Amostr	a Total Seca	g	1.932,4			Peso Solo Seco	g	183,84
Peso Am	ostra # Nº 10	a	200.0			Umidade	%	9,4
Ţ	Ímida	g	200,0	Peso Amostra # Nº 10 Seca		g	182,9	
			Peneiramento	de Material			l	
Material Retido Porcentagem			n RESUMO					
renena	Peso em (g.)	Amostra Acumulada total		Que passa da	Pedregulho % retida acima da # Nº 4			46

				amostra		
				total		
2 pol	0,0	0,00	0,00	100,0	Areia Grossa # N° 4 à # N° 10	17
1 pol	0,0	0,00	0,00	100,0	Areia Média # Nº 10 à # Nº 40	25
3/8 pol	236,5	12,24	12,24	87,8	Areia Fina # N° 40 à # N° 200	12
N° 4	648,7	33,57	45,81	54,2	Silte + Argila passando na # Nº 200	0
N° 10	326,4	16,89	62,70	37,3	TOTAL %	100
Nº 40	121,3	66,33	33,67	12,6	% de Areia Grossa, Média e Fina	54
N° 200	59,8	32,70	0,96	0,4	Faixa da AASHO	F. F

Gráfico 5 - Granulometria solo-agregado 70% BGS e 30% argila

Fonte: O autor, 2015.

6.3 Limites de Atterberg

Os limites de plasticidade, e liquidez, da amostra de argila foram para estipular o grau máximo do índice de plasticidade que o material alcançaria, haja visto que a

premissa do trabalho foi analisar se suas características plásticas seriam passadas para o material, mesmo após a mistura com material não plástico.

A amostra contendo adição de 30% (trinta) de material britado não demonstrou diferença no aspecto visual e de trabalho na realização do ensaio de limite de liquidez e limite de plasticidade, embora os resultados demonstraram uma queda nos teores de umidade.

A amostra contendo adição de 50 % (cinquenta) de material britado demonstrou ser mais susceptível a umidade, o limite de liquidez foi repetido mais de 2 (duas) vezes para a averiguação real do fechamento da ranhura no aparelho de Casagrande para não passar falsos resultados para o trabalho. O limite de plasticidade foi realizado também com uma preocupação acima da estipulada pela norma e foram realizados ensaios extras para a confirmação do grau de umidade.

A amostra com 70% de adição de material britado se mostrou menos influenciada pela argila e seus valores foram classificados como não plástico e não líquidos pelos ensaios. Todas as tabelas com os valores e análises estão no Apêndice C.

Tabela 9 – Limites de liquidez e plasticidade da argila vermelha

		LIMIT	TEDEL	QUIDEZ	Z	
Números de Golpes	n°	50	39	30	20	10
Cápsula	n°	11	15	12	13	14
Cápsula + Solo + Água	g	20,62	20,81	19,64	21,34	20,85
Cápsula + Solo	g	16,06	16,25	15,65	16,86	16,44
Peso da Água	g	4,56	4,56	3,99	4,48	4,41
Peso da Cápsula	g	5,04	5,55	6,52	6,93	7,15
Peso Solo Seco	g	11,02	10,70	9,13	9,93	9,29
Teor de Umidade	%	41,4	42,6	43,7	45,1	47,5
	LI	MITEI	DEPLAS	STICIDA	DE	
Cápsula	n°	2	3	4	5	6
Cápsula + Solo + Água	g	9,68	10,45	10,64	10,76	9,86
Cápsula + Solo	g	9,16	9,44	9,51	9,36	8,88
Peso da Água	g	0,52	1,01	1,13	1,40	0,98
Peso da Cápsula	g	7,51	6,27	5,96	4,93	5,69
Peso Solo Seco	g	1,65	3,17	3,55	4,43	3,19
Teor de Umidade	%	31,5	31,9	31,8	31,6	30,7
Valores aceitáveis		Sim	Sim	Sim	Sim	Sim

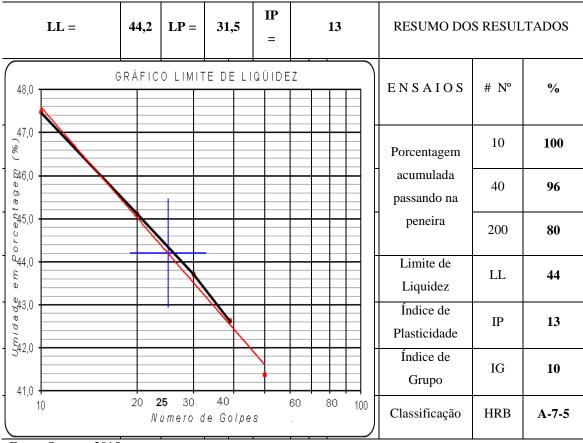


Tabela 10 – Limites de liquides e plasticidade do solo-agregado com 70% de argila e 30% de BGS

		LIMIT	EDELI	QÜIDEZ		
Números de Golpes	n°	50	39	30	20	10
Cápsula	n°	11	15	13	17	12
Cápsula + Solo + Água	g	20,13	21,13	19,86	20,47	21,00
Cápsula + Solo	g	16,54	17,50	16,92	17,36	17,93
Peso da Água	g	3,59	3,63	2,94	3,11	3,07
Peso da Cápsula	g	5,04	5,55	6,93	6,46	6,52
Peso Solo Seco	g	11,50	11,95	9,99	10,90	11,41
Teor de Umidade	%	31,2	30,4	29,4	28,5	26,9
	LII	MITEL	EPLAS	STICIDA	DE	
Cápsula	n°	6	4	3	10	9
Cápsula + Solo + Água	g	12,32	12,00	11,46	12,45	11,22
Cápsula + Solo	g	11,12	10,87	10,51	11,43	10,20
Peso da Água	g	1,20	1,13	0,95	1,02	1,02

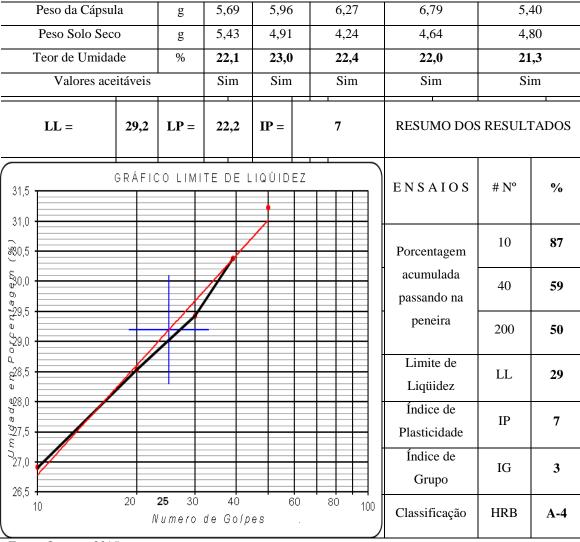


Tabela 11 – Limites de liquidez e plasticidade de solo-agregado com 50% de argila e 50% de BGS

LIMITEDELIQÜIDEZ										
Números de Golpes	n°	50	39	30	20	10				
Cápsula	n°	11	15	13	17	12				
Cápsula + Solo + Água	g	21,5 8	20,64	20,73	19,86	21,14				
Cápsula + Solo	g	18,3 3	17,89	18,31	17,63	18,90				
Peso da Água	g	3,25	2,75	2,42	2,23	2,24				
Peso da Cápsula	g	5,04	5,55	6,93	6,46	6,52				
Peso Solo Seco	g	13,2 9	12,34	11,38	11,17	12,38				

Teor de Umidade	e	%	24,5	22,3	21,3	20,0	18	3,1
		LIMI	ГЕDЕ	PLAST	ICIDADI	Ξ		
Cápsula		n°	6	4	3	10	Ç)
Cápsula + Solo + Á	gua	g	9,52	10,63	11,06	11,40	10.	,85
Cápsula + Solo		g	8,93	9,91	10,32	10,69	10,	,02
Peso da Água		g	0,59	0,72	0,74	0,71	0,	83
Peso da Cápsula	l	g	5,69	5,96	6,27	6,79	5,4	40
Peso Solo Seco		g	3,24	3,95	4,05	3,90	4,0	62
Teor de Umidado	e	%	18,2	18,1	18,3	18,2	18	3,0
Valores acei	táveis		Sim	Sim	Sim	Sim	Si	m
LL =	21,1	LP =	18,2	IP =	3		UMO DO	
30,0 G F	RÁFICO	LIMITE	DE LIC	ÜIDEZ		ENSAI OS	# N°	%
25,0						Porcentage m	10	70
ε ^ω 20,0						acumulada passando	40	48
0,15,0						na peneira	200	41
Q						Limite de Liquidez	LL	21
©10,0 © © © E 5,0						Índice de Plasticidad e	IP	3
						Índice de Grupo	IG	1
0,0 + 10	20 21 Nur	5 30 mero de	40' Golpes	60	100	Classificaç ão	HRB	A-4

6.4 Compressão simples (C.B.R)

A argila vermelha se mostrou ser um material de boa trabalhabilidade e resistência à penetração muito satisfatória para um material argiloso, o índice máximo registrado no ensaio foi de 19%, haja vista que argilas na ordem de até 11% são muito bem cotadas dentro do mercado.

A brita graduada, assim como esperado, demonstrou um índice de suporte Califórnia de sua umidade ótima de 87%, identificando o teto máximo que as conseguintes amostras de solo-agregado podem alcançar.

A amostra com 70% de argila e 30% de brita demonstrou uma trabalhabilidade melhorada em relação à argila vermelha pura, pois o material britado age como um auxiliador na homogeneização do composto. A amostra atingiu 32% de índice de suporte Califórnia.

O composto com 50% de argila e 50% de BGS se mostrou de difícil trabalhabilidade em relação a homogeneização e assimilação com a umidade adicionada, a amostra ainda manteve as características plásticas e líquidas da argila e atingiu 48% de índice de suporte califórnia.

O composto com 30% de argila e 70% de BGS demonstrou baixa aceitabilidade a variações de umidade e trabalhabilidade, assim como um material britado se comporta, e possuiu um fechamento de seus vazios mais satisfatórios em relação ao BGS puro. Seu índice de suporte Califórnia foi de 75%.

7 CONCLUSÃO

Com a análise e execução destes ensaios, chegaram-se às seguintes conclusões:

a) Compactação

Nos ensaios de compactação, a adição de material britado em suas respectivas porcentagens mostrou-se que a trabalhabilidade do material melhora gradativamente. E mesmo em quantidades pequenas de argila o material se mostra mais suscetível à compactação.

b) Granulometria

As granulometrias se mostraram coerentes com a adição do material britado, mostrando à eficiência de se fazer a coleta de uma só vez, evitando possíveis mudanças que podem ocorrer no processo de britagem da pedra calcária na jazida.

c) Limites de Atterberg

Os índices de liquidez e plasticidade foram indicadores de possíveis patologias que esse tipo de mistura pode oferecer. O grau de plasticidade e liquidez pode ser caracterizado sem problemas até a proporção de 50% de material britado adicionado à argila vermelha. Embora a classificação da mistura de solo-agregado com 70% de BGS e 30% de argila tenha sido de não plástico e não líquido, o comportamento plástico foi observado na execução do ensaio até a ordem de 15 golpes no equipamento de Casagrande, mas com o aumento da umidade não se pode mais quantificar, fazendo com que o material se feche independente a quantidade de golpes, classificando-o assim como material não plástico.

d) Compressão Simples (CBR)

A premissa do trabalho de caracterizar a porcentagem que seria necessária de argila em um material granulometricamente estabilizado e de características não plásticas, para que o mesmo demonstre que em situações de peso elevado, não pôde ser demonstrado no ensaio de Índice de Suporte Califórnia. Ao realizar o primeiro rompimento do corpo-de-prova a prensa de CBR mostrou-se não ter condições de trabalhar com pressões acima do estipulado em norma, tanto que o equipamento, dotado de engrenagens e de uma manivela manual, mostrou ter um sistema de segurança, para que assim que a pressão ultrapassasse a máxima

estipulada em norma, fizesse com que a manivela rodasse "em falso", não deixando serem obtidas leituras acima das penetrações na ordem de 12,7 mm (0.5 pol.). Embora não haja no manual do equipamento tal especificação, nenhum ensaio foi realizado acima dessa penetração, por causa de tal efeito de sua mecânica.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7182**: Ensaio de compactação, Rio de Janeiro, 1986.

____ **NBR 6457**: Amostras de solo – preparação para ensaio de compactação e caracterização, Rio de Janeiro, 1986.

BALBO, J. T. **Pavimentação asfáltica:** materiais, projetos e restauração. São Paulo: Oficina de Textos, 2007, 558 p.

BAPTISTA, C. F. N. **Pavimentação:** tomo II: compactação dos solos no campo, camadas de base e estabilização dos solos. Porto Alegre: Globo, 1974. 178 p.

BAPTISTA, C. F. N. **Pavimentação:** tomo III: revestimentos, pavimentos rígidos e conservação dos pavimentos. Porto Alegre: Globo, 1975. 275 p.

BERNUCCI, L. B. *et al.* **Formação básica para engenheiros**. Rio de Janeiro: PETROBRAS: ABEDA, 2007. 501 p.

CRAIG, R. F. Mecânica dos solos. 7 ed. Rio de Janeiro: LTC, 2012. 359 p.

DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. **ES 303**: Base estabilizada granulometricamente, Rio de Janeiro, 1997.

PRO 120 : Coleta de amostra de agregados, Rio de Janeiro, 1997.
EM 035 : Peneiras de malhas quadradas para análise granulométrica de solos Rio de Janeiro, 1995.
ME 083 : Agregados – análise granulométrica, Rio de Janeiro, 1998.
PRO 003 : Coletas de amostras deformadas de solos, Rio de Janeiro, 1994.
ME 080 : Solos – análise granulométrica por peneiramento, Rio de Janeiro 1994.
ME 122: Solos – determinação do limite de liquidez, Rio de Janeiro, 1994.
ME 082 : Solos – determinação do limite de plasticidade, Rio de Janeiro, 1994.
ME 049 : Solos – determinação do Índice de Suporte Califórnia utilizando amostras não trabalhadas Rio de Janeiro 1994

PINTO, Carlos de Sousa. **Curso básico de mecânica dos solos**. 3 ed. São Paulo: Oficina de Textos. 367 p.

PORTER, O. J. **Development of the original method for highway design.** Development of CBR flexible pavement design method for airfields. New York Transactions of American Society of Civil Engineers, v. 115, p. 461-7, 1950.

APÊNDICE A – PLANILHAS DOS ENSAIOS DE COMPACTAÇÃO Argila vermelha

Cápsula Cápsula + Solo + Água Cápsula + Solo Seco Peso da Cápsula Água Solo Seco Teor de Umidade Conferencia de Umidad Úmidade Calculada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Solo + Água Volume do Molde Massa Específica Umid Massa Específica Umid Massa Específica Umid Massa Específica Umid	nº a g g g g g g g	Determina 23,4 13,0	ção do Teor de	e Umidade	- à	- Data:	24/08/15 Higroscópica 6 511,88 469,68 11,88 25,27
Cápsula + Solo + Água Cápsula + Solo Seco Peso da Cápsula Água Solo Seco Teor de Umidade Conferencia de Umidad Umidade Calculada Água Adicionada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Solo + Água Volume do Molde Massa Específica Umidade	g g g g g w w.dee % g g	23,4		e Umidade			6 511,88 469,68 11,88
Cápsula + Solo + Água Cápsula + Solo Seco Peso da Cápsula Água Solo Seco Teor de Umidade Conferencia de Umidad Umidade Calculada Água Adicionada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Solo + Água Volume do Molde Massa Específica Umidade	g g g g g w w.dee % g g		OF C				511,88 469,68 11,88
Cápsula + Solo Seco Peso da Cápsula Água Solo Seco Teor de Umidade Conferencia de Umidad Úmidade Calculada Água Adicionada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umic Massa Espec. Apar. S Densidade Máxim	9 9 9 %ode % 9		05.0				469,68 11,88
Peso da Cápsula Água Solo Seco Teor de Umidade Conferencia de Umidad Úmidade Calculada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Solo + Água Volume do Molde Massa Específica Umid	g g g % white state stat		OF C				11,88
Água Solo Seco Teor de Umidade Conferencia de Umidad Umidade Calculada Água Adicionada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Solo + Água Volume do Molde Massa Específica Umid	g g % wide % g		25.0				
Solo Seco Teor de Umidade Conferencia de Umidad Umidade Calculada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umid Massa Espec. Apar. S Densidade Máxim 2 **Emplo et al. **Emplo et	g % dde % % g		25.0				
Teor de Umidade Conferencia de Umidad Umidade Calculada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umic Massa Espec. Apar. S Densidade Máxim	% dde		25.0				
Conferencia de Umidad Umidade Calculada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umid	% % g		25.0				457,80
Umidade Calculada Água Adicionada Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umic Massa Espec. Apar. S Densidade Máxim	% % g		25.0				9,2
Água Adicionada Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umic Massa Espec. Apar. S Densidade Máxim	% g		05.0				
Água Adicionada Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Unio Massa Espec. Apar. S Densidade Máxim	g	13.0	25,6	27,8	30,0	32,2	
Numero do Molde Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umio Massa Espec. Apar. S Densidade Máxim		10,0	15,0	17,0	19,0	21,0	
Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Unio Massa Espec. Apar. S Densidade Máxim	n ⁰	1040	1200	1360	1520	1680	
Peso Molde + Solo + Á Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Unio Massa Espec. Apar. S Densidade Máxim	n0	Determina	ção da Massa	Especifíca			Peso da
Peso do Molde Peso do Solo + Água Volume do Molde Massa Específica Umic Massa Espec. Apar. S Densidade Máxim	111	3	9	11	8	2	Amostra
Peso do Solo + Água Volume do Molde Massa Específica Umio Massa Espec. Apar. S Densidade Máxim	kgua g	7345	7715	7970	7895	7805	0000
Volume do Molde Massa Específica Umio Massa Espec. Apar. S Densidade Máxim 2 2 2 2 2 2 2 2 2 2 2 2 2	g	3884	3880	3942	3990	4094	8000
Massa Específica Umic Massa Espec. Apar. S Densidade Máxim 2 2 2 2 2 2 2 4 4 4 4 4 4	g	3461	3835	4028	3905	3711	Peso Amos.
Massa Espec. Apar. S Densidade Máxim 2 2 2 2 2 2 2 2 2 2 2 2 2	dm³	2024	2036	2067	2049	2080	Seco
Densidade Máxim 2 Emp/b emixem 1	da g/dm²	1,710	1,884	1,949	1,906	1,784	7325
2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seca g/dm²	1,386	1,500	1,525	1,466	1,350	7323
maxima g/dm³	ıa	1,527	g/dm³	Úm idade ó	tima	27,3	%
Wassa especifica apara 1 23,0 24.0		5.0 26.0 e n t a	27.0	28.0 29.0	30.0	31.0 32	.0 33,0

Brita graduada simples (BGS)

Furo:	-	Amo	ostra:	j	1	Pro	undida	de (m):	-	à	-	Data:	23/09/15
			Det	ermina	ıção do	Teor	le Umid	ade					Higroscópica
Cápsula		nº											5
Cápsula + S	Solo + Água	g											103,61
Cápsula + S	Solo Seco	g											103,00
Peso da Cá	ápsula	g											12,27
Água		g											25,27
Solo Seco		g											90,73
Teor de Um	nidade	%											0,7
Conferenci	ia de Umidade												
Umidade Ca	alculada	%	2	,7	3	3,7		4,7	5	,7	(6,7	
Água Adici	ionada	%	1	,0	2	2,0		3,0	4	,0		5,0	
Água Adici	ionada	g	14	40	2	210		280	3	50	4	120	
			De	termina	ação da	Massa	Espec	fíca					Peso da
Numero do	Molde	nº	1	4		13		10		1		6	Amostra
Peso Molde	e + Solo + Água	g	82	20	8	530	8	370	83	340	8	350	
Peso do Mo	olde	g	40	36	4	 244	3	978	40	002	4	018	7000
Peso do So	olo + Água	g	41			286	_	392	_	38		332	Peso Amos.
Volume do	-	dm³	20	50	20	D53	7	051	20)41	20	 045	Seco
Massa Esp	ecÍfica Umida	g/dm³	2,0			088	_	,141		125		118	
	ec. Apar. Seca	-	1,9	988	2,	013	2	,045	2,0	011	1,	985	6953
	ade Máxima		2,045		g/e	dm³	Ún	idade d	tima		4,7		%
Massa especifica apar. maxima g/dm³	P		c e	n t	a	g e	m	d	e	Un	7 <i>i</i>	d a	d e
- 2 - - 1,0) 2	2,0		3,0		4,0		5,0		6,0		7,0	8,0

70 % argila vermelha e 30% BGS

Determinação do Teor de Umidade	MATERIAL 7	'0% argila v	ermelha 30% BO	GS Profu	ındidade (m):	- à	- Data:	03/07/15
Câpsula + Solo + Água g 204,15 Câpsula + Solo Seco g 198,30 Peso da Câpsula g 14,93 Água g 25,27 Solo Seco g 183,37 Teor de Umidade % 3,2 Conferencia de Umidade Umidade Calculada % 11,4 12,5 13,5 14,5 15,6 Água Adicionada % 8,0 9,0 10,0 11,0 12,0 Água Adicionada g 400 450 500 550 600 Determinação da Massa Específica Peso Molde + Solo + Água g 751 8238 7986 7886 5000 Peso do Molde g 4022 4002 4244 4068 4094 Peso do Solo + Água g 3563 3749 3994 3918 3792 Peso Amos Seco Wassa Especifica Umida g/dm² 1,723 1,837 1,945 1,914 1,823 Massa Especi			Determina	ção do Teor de	Umidade			Higroscópica
Cápsula + Solo Seco g 198,30 Peso da Cápsula g 14,93 Água g 25,27 Solo Seco g 183,37 Teor de Umidade % 3,2 Umidade Calculada % 11,4 12,5 13,5 14,5 15,6 Água Adicionada % 8,0 9,0 10,0 11,0 12,0 Água Adicionada g 400 450 500 550 600 Determinação da Massa Específica Numero do Molde nº 7 1 13 5 2 Amostra Peso do Molde + Solo + Água g 7585 7751 8238 7986 7886 5000 Peso do Solo + Água g 3563 3749 3994 3918 3792 Peso Amos Seco Massa Especifica Umida g/dm² 1,723 1,837 1,945 1,914 1,823 4845 Messa Especifica Umida g/dm² 1,546 1,633	Cápsula	nº						5
Peso da Cápsula 9 14,93 Âgua 9 25,27 Solo Seco 9 183,37 Teor de Umidade 9% 3,2 Conferencia de Umidade 9% 11,4 12,5 13,5 14,5 15,6 Agua Adicionada 9% 8,0 9,0 10,0 11,0 12,0 Agua Adicionada 9 400 450 500 550 600 **Determinação da Massa Específica Peso da Amostra Peso Molde + Solo + Água 9 7585 7751 8238 7986 7886 7886 Peso do Molde 9 4022 4002 4244 4068 4094 Peso do Molde 9 4022 4002 4244 4068 4094 Peso do Solo + Água 9 3563 3749 3994 3918 3792 Peso Amos Seco Volume do Molde dm² 2068 2041 2053 2047 2080 Seco Volume do Molde dm² 2068 2041 2053 2047 2080 Seco Massa Específica Umida 9/dm² 1,723 1,837 1,945 1,914 1,823 4845 **Densidade Máxima** 1,715 g/dm³ Úmidade ótima 13,7 %	Cápsula + Solo + Águ	a g						204,15
Agua g 25,27 Solo Seco g 183,37 Teor de Umidade 9% 3,2 Conferencia de Umidade 9% 11,4 12,5 13,5 14,5 15,6 Agua Adicionada 9% 8,0 9,0 10,0 11,0 12,0 Agua Adicionada g 400 450 500 550 600 Determinação da Massa Específica	Cápsula + Solo Seco	g						198,30
Agua 9 25,27 Solo Seco 9 183,37 Teor de Umidade 9% 3,22 Conferencia de Umidade 9% 11,4 12,5 13,5 14,5 15,6 Agua Adicionada 9% 8,0 9,0 10,0 11,0 12,0 Agua Adicionada 9 400 450 500 550 600 **Determinação da Massa Específica Peso da Amostra Peso Molde 9 77 1 13 5 2 Amostra Peso Molde 9 4022 4002 42,44 4068 4094 Peso do Molde 9 4022 4002 42,44 4068 4094 Peso do Solo + Água 9 3563 3749 3994 3918 3792 Peso Amos Seco Volume do Molde dm² 2068 2041 2053 20,47 2080 Seco Massa Específica Umida 9/dm² 1,723 1,837 1,945 1,914 1,823 4845 **Densidade Máxima** 1,715 g/dm³ Úmidade ótima 13,7 %	Peso da Cápsula	g						14,93
Teor de Umidade	Água	g						i
Conferencia de Umidade Umidade Calculada	Solo Seco	g						183,37
Umidade Caiculada	Teor de Umidade	%						3,2
Água Adicionada % 8.0 9,0 10,0 11,0 12,0 Água Adicionada g 400 450 500 550 600 Determinação da Massa Específica Peso da Amostra Numero do Molde nº 7 1 13 5 2 2 Peso Molde + Solo + Água g 7585 7751 8238 7986 7886 5000 Peso do Molde g 4022 4002 4244 4068 4094 Peso do Solo + Água g 3563 3749 3994 3918 3792 Peso Amos Seco Volume do Molde dm³ 2068 2041 2053 2047 2080 Seco Massa Específica Umida g/dm³ 1,723 1,837 1,945 1,914 1,823 4845 Densidade Máxima 1,715 g/dm³ Úmidade ótima 13,7 %	Conferencia de Umida	de						
Agua Adicionada g 400 450 500 550 600 Determinação da Massa Específica Peso da Amostra Numero do Molde nº 7 1 13 5 2 Amostra Peso Molde + Solo + Água g 7585 7751 8238 7986 7886 5000 Peso do Molde g 4022 4002 4244 4068 4094 4002 4244 4068 4094 4002 4204 4068 4094 4002 4204 4068 4094 4002 4204 4002 4204 4002 4204 4002 4204 4003 4002 4204 4002 4204 4002 4204 4002 4204 4002 4002 4204 4002	Umidade Calculada	%	11,4	12,5	13,5	14,5	15,6	
Determinação da Massa Específica Peso da Amostra	Água Adicionada	%	8,0	9,0	10,0	11,0	12,0	
Numero do Molde nº 7 1 13 5 2 Amostra Peso Molde + Solo + Água g 7585 7751 8238 7986 7886 Peso do Molde g 4022 4002 4244 4068 4094 Peso do Solo + Água g 3563 3749 3994 3918 3792 Peso Amos Seco Volume do Molde dm³ 2068 2041 2053 2047 2080 Massa Específica Umida g/dm³ 1,723 1,837 1,945 1,914 1,823 Massa Espec. Apar. Seca g/dm³ 1,546 1,633 1,714 1,671 1,577 Densidade Máxima 1,715 g/dm³ Úmidade ótima 13,7 %	Água Adicionada	g	400	450	500	550	600	
Peso Molde + Solo + Água g 7585 7751 8238 7986 7886 Peso do Molde g 4022 4002 4244 4068 4094 Peso do Solo + Água g 3563 3749 3994 3918 3792 Peso Amos Seco Massa Específica Umida g/dm³ 1,723 1,837 1,945 1,914 1,823 Massa Espec. Apar. Seca g/dm³ 1,546 1,633 1,714 1,671 1,577 Densidade Máxima 1,715 g/dm³ Úmidade ótima 13,7 %			Determina	ação da Massa	Especifíca	-	-	Peso da
Peso do Molde	Numero do Molde	nº	7	1	13	5	2	Amostra
Peso do Molde	Peso Molde + Solo + Á	igua g	7585	7751	8238	7986	7886	
Peso do Solo + Água g 3563 3749 3994 3918 3792 Peso Amos Seco Volume do Molde dm³ 2068 2041 2053 2047 2080 Seco Massa Específica Umida g/dm³ 1,723 1,837 1,945 1,914 1,823 4845 Massa Espec. Apar. Seca g/dm³ 1,546 1,633 1,714 1,671 1,577 % Densidade Máxima 1,715 g/dm³ Úmidade ótima 13,7 %	Peso do Molde	g	4022	4002	4244	4068	4094	5000
Volume do Molde dm³ 2068 2041 2053 2047 2080 Seco Massa Específica Umida g/dm³ 1,723 1,837 1,945 1,914 1,823 4845 Massa Espec. Apar. Seca g/dm³ 1,546 1,633 1,714 1,671 1,577 4845 Densidade Máxima 1,715 g/dm³ Úmidade ótima 13,7 %	Peso do Solo + Água	g						Peso Amos.
Massa Específica Unida g/dm³ 1,723 1,837 1,945 1,914 1,823 4845 Massa Espec. Apar. Seca g/dm³ 1,546 1,633 1,714 1,671 1,577 Densidade Máxima 1,715 g/dm³ Úmidade ótima 13,7 %	Volume do Molde	-	2068	2041	2053	2047	2080	1
Massa Espec. Apar. Seca g/dm³ 1,546 1,633 1,714 1,671 1,577 Densidade Máxima 1,715 g/dm³ Úmidade ótima 13,7 %	Massa EspecÍfica Umi	da g/dm³						
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Massa Espec. Apar. S	Seca g/dm³	1,546	1,633	1,714	1,671	1,577	4845
2	Densidade Máxim	а	1,715	g/dm³	Úm idade ó	tima	13,7	%
2	2 —							
11,0 115 120 125 130 135 140 145 150 155 16,0 Porcentagem de Umidade	2	5 12	0 125	13.0	13.5 14.0	14.5	15.0 15	55 16,0

50% argila vermelha 50% BGS

30% argila vermelha 70% BGS

Determinação do Teor de Umidade	COLETA:	30% AF	RGILA 7	70% B	ICA	COR	RIDA		Pr	ofu	ndid	ade (m):		-		à		-	ı	Data:	2	29/09/15
Căpsula + Solo + Água g 216,29 Căpsula + Solo Seco g 199,06 Peso da Căpsula g 15,22 Agua g 225,27 Solo Seco g 183,84 Teor de Unidade % 9,4 Conferencia de Unidade Unidade Calculada % 1,0 2,0 3,0 4,0 5,0 Agua Adicionada % 1,0 2,0 3,0 4,0 5,0 8,0 4,0 5,0 8,0 4,0 4,0 5,0 4,0 <				D	ete	rmin	ação	do '	Teor	de	Umi	dade	•									Hiç	roscópic
Căpsula + Solo Seco g 199,06 Peso da Cápsula g 15,22 Água g 25,27 Solo Seco g 183,84 For de Umidade % 9,4 Conferencia de Umidade William 10,5 11,6 12,7 13,7 14,8 Água Adicionada % 1,0 2,0 3,0 4,0 5,0 Agua Adicionada g 80 160 240 320 400 Determinação da Massa Específica Numero do Molde n° 3 11 12 9 2 Amostra Peso do Molde n° 3 311 12 9 2 Amostra Peso do Molde n° 3 3884 3942 4158 3880 4094 Peso Amos 9 2 4158 3880 4094 Peso Amos 9 2 2 2 2 2 2 2 2 2 2 2	Cápsula		nº											T				Т					4
Peso da Cápsula g	Cápsula + Solo	+ Água	g																				216,29
Água g 25,27 Solo Seco g 183,84 Teor de Umidade 9,4 Londerencia de Umidade 9,4 Londerencia de Caculada 9,10,5 11,6 12,7 13,7 14,8 Água Adicionada 9,1,0 2,0 3,0 4,0 5,0 Agua Adicionada g 80 160 240 320 400 Determinação da Massa Específica Peso do Molde nº 3 11 12 g 2 Peso do Molde + Solo + Água g 7895 8354 8705 8258 8360 8000 Peso do Molde g 3884 3942 4158 3880 4094 4266 Peso Amos Seco Volume do Molde dm² 2024 2067 2048 2036 2080 Seco Massa Específica Umida g/dm² 1,982 2,134 2,220 2,150 2,051 7314 Massa Específica Umida 1,971 g/dm³ Úmidade ótima 12,6 %	Cápsula + Solo	Seco	g											T									199,06
Agua g g	Peso da Cápsul	a	g											T				T					15,22
Teor de Umidade	Água		g											T									
Conferencia de Umidade Umidade Umidade Calculada % 10,5 11,6 12,7 13,7 14,8 Agua Adicionada % 1,0 2,0 3,0 4,0 5,0 Agua Adicionada g 80 160 240 320 400	Solo Seco		g											T									183,84
Umidade Caiculada	Teor de Umidad	e	%											\top									9,4
Água Adicionada % 1,0 2,0 3,0 4,0 5,0 Água Adicionada g 80 160 240 320 400 Determinação da Massa Específica Numero do Molde nº 3 11 12 9 2 Amostra Peso Molde + Solo + Água g 7895 8354 8705 8258 8360 8000 Peso do Molde g 3884 3942 4158 3880 4094 4094 Peso do Solo + Água g 4011 4412 4547 4378 4266 Peso Amos Seco Massa Específica Umida g/dm² 1,982 2,134 2,220 2,150 2,051 7314 Massa Espec. Apar. Seca g/dm² 1,794 1,913 1,971 1,890 1,766 %	Conferencia de	Umidade																					
Água Adicionada g 80 160 240 32∪ 400 Determinação da Massa Específica Peso da Amostra Numero do Molde n° 3 11 12 9 2 Amostra Peso Molde + Solo + Água g 7895 8354 8705 8258 8360 8000 Peso do Molde g 3884 3942 4158 3880 4094 4066 Peso Amos Seco OMORIDA 4412 4547 4378 4266 Peso Amos Seco OMORIDA 2024 2067 2048 2036 2080 2080 Seco OMORIDA 2080 2080 2080 2080 2080 314 2024 2067 2048 2036 2080 2051 7314 314	Umidade Calcula	ada	%		10,5	5		11	,6			12,7				13,7			1	4,8			
Numero do Molde	Água Adicionad	а	%		1,0			2,	0			3,0				4,0		Т	;	5,0			
Numero do Molde	Água Adicionad	а	g		80			16	60			240				320			4	400			
Peso Molde + Solo + Água g 7895 8354 8705 8258 8360 8000 Peso do Molde g 3884 3942 4158 3880 4094 Peso do Solo + Água g 4011 4412 4547 4378 4266 Peso Amos Seco Volume do Molde dm³ 2024 2067 2048 2036 2080 Massa Específica Umida g/dm³ 1,982 2,134 2,220 2,150 2,051 7314 Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Densidade Máxima 1,971 g/dm³ Úmidade ótima 12,6 %			•		Dete	rm ir	nação	da	Mas	sa E	spe	cifíca	3										Peso da
Peso do Molde	Numero do Mold	e	nº		3		Т	1	1			12		Т		9		Т		2			Amostra
Peso do Molde	Peso Molde + So	olo + Água	g	-	789	5	\dagger	83	54			8705	5	\dagger	8	3258		\top	8	360			
Peso do Solo + Água g 4011 4412 4547 4378 4266 Peso Amos Seco Volume do Molde dm³ 2024 2067 2048 2036 2080 Seco Massa Específica Umida g/dm³ 1,982 2,134 2,220 2,150 2,051 7314 Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,982 2,134 2,220 2,150 2,051 7,314 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,982 2,134 2,220 2,150 2,051 7,314 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,982 2,134 2,220 2,150 2,051 7,314 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,982 2,134 2,220 2,150 2,051 7,314 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,982 2,134 2,220 2,150 2,051 7,314 Peso Amos Seco Massa Espec. Apar. Seca g/dm³ 1,991 1	Peso do Molde		g		388	4	1	39	42			4158	 3	†		888)	\top	4	094		1	8000
Volume do Molde dm³ 2024 2067 2048 2036 2080 Seco Massa Específica Umida g/dm³ 1,982 2,134 2,220 2,150 2,051 7314 Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 %	Peso do Solo +	Água	-				1			\exists				†				\top				Pe	so Amos
Massa Específica Umida g/dm³ 1,982 2,134 2,220 2,150 2,051 7314 Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 % Densidade Máxima 1,971 g/dm³ Úm idade ótima 12,6 %	Volume do Mold	е е			202	4		20	 67			2048	3	\dagger		036		\top	2	080			
Massa Espec. Apar. Seca g/dm³ 1,794 1,913 1,971 1,890 1,786 Densidade Máxima 1,971 g/dm³ Úmidade ótima 12,6 % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Massa Específic	a Umida	g/dm³				\top							†				\top					
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Massa Espec. A	par. Seca	g/dm³	•	1,79	4	\top	1,9	13			1,97°	1	\dagger	1	,890)	\top	1,	786			7314
2	Densidade M	/láxim a		1,97	71			g/d	m³		ί	mida	ade	ótir	na			1	2,6			%	
9,0 10.0 11.0 12.0 13.0 14.0 15.0 16,0 Porcentagem de Umidade	2 Wassa especifica apar. maxima g/dm³ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											13	30			14	10			15	10		16,0

APÊNDICE B – GRANULOMETRIAS

Argila vermelha

	Prep	oaração d	a Amostra			Um idade Hig	jroscá	ópica
Amostra	a Tota	ıl		Fauitralanta	do oroio	Capsula	nº	6
eso Amostra Total Úmida	g	2	.000,0	Equivalente	de areia	Cap.+ Solo + Água	g	511,88
etido acima da # № 10	g		0,0			Capsula + Solo	g	469,68
assando# № 10 Úmida	g	2.	.000,0			Peso Capsula	g	11,88
assando # № 10 Seco	g	1.	.831,2			Peso da Água	g	42,20
Amostra Total Seca	g	1.	.831,2			Peso Solo Seco	g	457,80
Peso Amostra # № 10 Úmida		,	200.0			Umidade	%	9,2
reso Amostra # Nº 10 Omida	g	•	200,0	Peso	Amostra #	№ 10 Seca	g	183,1
			Peneirame	nto de Material				
		Material	Retido			DECLINO		
Peneira _			Porcentager	m		RESUMO		
Peso em (g.)	Amo	ostra total	Acumulada	Que passa da amostra total	Pedregu	lho % retida acima da #	‡ № 4	0
2 pol 0,0		0,00	0,00	100,0	Areia G	rossa #Nº4à#N	№ 10	0
1 pol 0,0		0,00	0,00	100,0	Areia M	lédia #Nº10à#N	№ 40	4
3/8 pol 0,0		0,00	0,00	100,0	Areia F	ina #Nº 40 à #Nº	200	16
Nº 4 0,0		0,00	0,00	100,0	Silte + A	rgila passando na # N	₽ 200	80
Nº 10 0,0		0,00	0,00	100,0		TOTAL %		100
Nº 40 7,3		3,99	96,01	96,0	% de.	Areia Grossa, Média e	Fina	20
Nº 200 28,8		15,73	80,29	80,3		Faixa da AASHO	7	F. F
100 80 80 80 80 80 80 80 80 80						Curva Granulom Faixa da AA:		

Brita graduada Simples (BGS)

A		eparaçao	da Amostra			Um idade Hig	rosc	ópica
Amo	stra To	tal		Fauit clanta da		apsula	nº	5
eso Amostra Total Úmida	g		2.000,0	- Equivalente de	e areia C	ap.+ Solo + Água	g	100,00
Retido acima da # № 10	g		1.427,1		С	apsula + Solo	g	99,20
assando# № 10 Úmida	g		572,9		P	eso Capsula	g	14,67
assando# № 10 Seco	g		567,5		P	eso da Água	g	0,80
Amostra Total Seca	g		1.994,6		Р	eso Solo Seco	g	84,53
Peso Amostra #Nº10Úm	ida a		200.0		U	midade	%	0,9
reso Amostia # Nº 10 Om	ida g		200,0	Peso Ai	mostra # Nº	10 Seca	g	198,1
			Peneirame	ento de Material				
		Materia	al Retido			RESUMO		
Peneira			Porcentage	,		NEGGIVIO		
Peso em (g.)	Aı	mostra tota	I Acumulada	Que passa da amostra total	Pedregulho ⁶	% retida acima da #	! № 4	49
2 pol 0,0		0,00	0,00	100,0	Areia Gross	sa #Nº4à#N	10 ا	23
1 pol 0,0		0,00	0,00	100,0	Areia Média	a #Nº 10 à #N	№ 40	13
3/8 pol 310,7		15,58	15,58	84,4	Areia Fina	# Nº 40 à # Nº	200	4
Nº 4 665,8		33,38	48,96	51,0	Silte + Argila	passando na # N	⁰ 200	11
Nº 10 450,6		22,59	71,55	28,5		TOTAL %		100
Nº 40 90,5		45,69	54,31	15,5	% de Are	ia Grossa, Média e	Fina	40
№ 200 30,3		15,29	39,02	11,1	Fa	ixa da AASHO		FAIXA (
100 Borcentagem que passa 40 40 40 40 40 40 40 40 40 40 40 40 40						Curva Granulo		

70% argila vermelha 30% BGS

·		Pre	paração d	a Amostra				Um idade Hig	rosco	pica
	Amostra	Tota	al				Caps	sula	nº	5
Peso Amost	ra Total Úmida	g	2	.000,0	1		Cap.	+ Solo + Água	g	204,15
Retido acima	a da # № 10	g	:	248,2			Caps	sula + Solo	g	189,76
Passando #	№ 10 Úmida	g	1	.751,8			Pesc	Capsula	g	14,93
Passando #	Nº 10 Seco	g	1	.618,6			Pesc	da Água	g	14,39
Amos	tra Total Seca	g	1	.866,8			Pesc	Solo Seco	g	174,83
Peso Amos	stra # № 10 Úmida	g	:	200,0			Umid		%	8,2
							nostra # № 10	Seca	g	184,8
				Peneirame	ento de Mater	ial				
			Material					RESUMO		
Peneira	Poso om (g.)	<u> </u>		Porcentage	,					,
	Peso em (g.)	Amo	ostra total	Acumulada	Que passa o amostra tota		Pedregulho % r	etida acima da #	! Nº 4	8
2 pol	0,0		0,00	0,00	100,0		Areia Grossa	# Nº 4 à # N	№ 10	6
1 pol	0,0		0,00	0,00	100,0		Areia Média	# № 10 à # №	P 40	28
3/8 pol	43,1		2,31	2,31	97,7		Areia Fina	#Nº 40 à #Nº	200	9
Nº 4	99,7		5,34	7,65	92,3		Silte + Argila pa	assando na # N	₽ 200	50
Nº 10	105,4		5,65	13,30	86,7		то	TAL %		100
Nº 40	58,7		31,77	68,23	59,2		% de Areia G	Brossa, Média e	Fina	42
№ 200	19,8		10,71	57,52	49,9		Faixa	da AASHO		F. F
100 Porcentagem que passa 40 - 00 Fun	do Nº 200		N° 40	N° 1	0 N°	4	3/8 pol	Curva Granulor Faixa da A		2 pol

50% argila vermelha 50% BGS

		Pre	paração d	a Amostra			Um idade Hig	roscó	pica
	Amostra	Tota	ıl				Capsula	nº	5
Peso Amostr	a Total Úmida	g	2.	.000,0	Equivalente	de areia	Cap.+ Solo + Água	g	514,93
Retido acima	da # Nº 10	g	Ę	593,3			Capsula + Solo	g	504,43
Passando #	№ 10 Úmida	g	1.	.406,7			Peso Capsula	g	14,93
Passando #	№ 10 Seco	g	1.	.377,2			Peso da Água	g	10,50
Amost	ra Total Seca	g	1.	.970,5			Peso Solo Seco	g	489,50
Paga Amag	tra # № 10 Úmida		,	200,0			Umidade	%	2,1
resu Allius	ıra # Nº 10 Omlua	g	_	200,0	Peso	Amostra #	№ 10 Seca	g	195,8
				Peneirame	nto de Materia	al			
			Material	Retido			RESUMO		
Peneira				Porcentage			NESONO		
	Peso em (g.)	Amo	ostra total	Acumulada	Que passa da amostra total	Peareau	lho % retida acima da #	‡ № 4	20
2 pol	0,0		0,00	0,00	100,0	Areia G	rossa #Nº4à#N	№ 10	10
1 pol	0,0		0,00	0,00	100,0	Areia M	lédia #Nº10à#N	№ 40	21
3/8 pol	94,0		4,77	4,77	95,2	Areia F	ina #Nº40à#Nº	200	8
Nº 4	302,5		15,35	20,12	79,9	Silte + A	rgila passando na # N	l⁰ 200	41
Nº 10	196,8		9,99	30,11	69,9		TOTAL %		100
Nº 40	60,0		30,64	69,36	48,5	% de	Areia Grossa, Média e	Fina	39
№ 200	21,6		11,03	58,32	40,8		Faixa da AASHO		F. F
100 es 80 es 80			Granulométrica da AASHO						
60 60 60									
Porcentage 00									
20									
0 ₹ Func	do № 200		Nº 40	Nº 10 Numeros) Nº4 das Pene		3/8 pol 1 pol		2pol

30% argila vermelha 70% BGS

		Pre	paração d	a Amostra				Um idade Hig	rosc	ópica
	Amostra	Tota	al		Fauricales	4- 4-		Capsula	nº	4
Peso Amosti	ra Total Úmida	g	2	.000,0	- Equivalen	te de a	areia	Cap.+ Solo + Água	g	216,29
Retido acima	ı da # № 10	g	1	.211,7				Capsula + Solo	g	199,06
Passando #	№ 10 Úmida	g		788,3				Peso Capsula	g	15,22
Passando #	Nº 10 Seco	g		720,8				Peso da Água	g	17,23
Amos	tra Total Seca	g	1	.932,4				Peso Solo Seco	g	183,84
Pose Amos	stra # № 10 Úmida			200,0				Umidade	%	9,4
resu Allus	stra # Nº 10 Offica	g	•	200,0	Pes	so Am	ostra # N	P 10 Seca	g	182,9
				Peneiram	ento de Mater	rial				
			Material	Retido				RESUMO		
Peneira				Porcentage				TALGOIVIO		
	Peso em (g.)	Am	ostra total	Acumulada	Que passa amostra tot	- 11	Pedregulho	% retida acima da #	ŧ № 4	46
2 pol	0,0		0,00	0,00	100,0		Areia Gro	ssa #Nº4à#N	۱۵ P	17
1 pol	0,0		0,00	0,00	100,0		Areia Méd	lia #Nº10 à#N	№ 40	25
3/8 pol	236,5		12,24	12,24	87,8		Areia Fina	a #Nº40 à#Nº	200	12
Nº 4	648,7		33,57	45,81	54,2		Silte + Arg	ila passando na # N	P 200	0
Nº 10	326,4		16,89	62,70	37,3			TOTAL %		100
Nº 40	121,3		66,33	33,67	12,6		% de Ar	eia Grossa, Média e	Fina	54
№ 200	59,8		32,70	0,96	0,4		F	aixa da AASHO		F. F
100 🔻				•						
						\vdash				-
	Curva	Gran	ulométrica							
80 -	Faixa	a da	AASHO				$-\!\!\!/$	-		_
as										
d ө										
n b										
<i>ш</i>										_
n tag •										
a)										
Porc										
20										
			\mathcal{A}							
_0 ↓								 		
Fund	do Nº 200		Nº 40	Numero	s das Pen	°4		pol 1 pol		2pol

APÊNDICE C – LIMITES DE ATTERBERG

Argila vermelha

			LIMIT	re de i	_ I Q Ü	JIDE	Z			
Numeros de G	olpes	nº	50	39			30	20	1	0
Cápsula		nº	11	15			12	13	1	4
Cápsula + Solo	+ Água	g	20,62	20,81			19,64	21,34	20	,85
Cápsula + Solo)	g	16,06	16,25			15,65	16,86	16	,44
Peso da Água		g	4,56	4,56			3,99	4,48	4,	41
Peso da Cápsu	ıla	g	5,04	5,55			6,52	6,93	7,	15
Peso Solo Sec	0	g	11,02	10,70			9,13	9,93	9,	29
Teor de Umidad	de	%	41,4	42,6			43,7	45,1	47	7,5
			LIMITE	DE PLA	STI	CID	ADE			
Cápsula		nº	2	3			4	5	(6
Cápsula + Solo	+ Água	g	9,68	10,45			10,64	10,76	9,	86
Cápsula + Solo)	g	9,16	9,44			9,51	9,36	8,	88
Peso da Água		g	0,52	1,01			1,13	1,40	0,	98
Peso da Cápsu	ıla	g	7,51	6,27			5,96	4,93	5,	69
Peso Solo Sec	0	g	1,65	3,17			3,55	4,43	3,	19
Teor de Umida	de	%	31,5	31,9			31,8	31,6	30),7
Valor	es aceitáveis		Sim	Sim			Sim	Sim	S	im
LL =	44,2	LP=	31,5	IP =		13	1	RESUMO DOS	RESULTA	DOS
48,0	G	RÁFI	CO LIMITE	DE LIQÜ	DE Z	_		ENSAIOS	# Nº	%
47,0 8								Porcentagem	10	100
£46,0								acumulada passando na peneira	40	96
245,0								ponella	200	80
± 44,0 € ⊕								Limite de Liqüidez	LL	44
\$43,0					⇟			Índice de Plasticidade	IP	13
					\blacksquare			Índice de Grupo	IG	10
41,0 10			Num ?5 ro ³⁰ de	40	60	`	80 100) Classificação	HRB	A-7-

Brita graduada simples

			LIM	١٦	re de	LIC	ijij	D E	Z					
Numeros de	Golpes	nº	0		()	Π		0			0	C)
Cápsula		nº	0		()			0			0	C)
Cápsula + S	Solo + Água	g	0,00		0,0	00			0,00			0,00	0,0	00
Cápsula + S	Solo	g	0,00		0,0	00			0,00		7	0,00	0,0	00
Peso da Ág	ua	g	0,00		0,0	00			0,00			0,00	0,0	00
Peso da Cár	psula	g	5,55		5,	79			5,20			6,79	4,9	93
Peso Solo S	Seco	g	-5,55		-5,	79			-5,20)	7	-6,79	-4,	93
Teor de Umi	idade	%	0,0		0,	0			0,0			0,0	0,	0
			LIMITE		DE P	LAS	ГІС	ΙD	ΑГ	Ε				
Cápsula		nº	0		()	Τ		0		Т	0	C)
Cápsula + S	Solo + Água	g	0,00		0,0	00			0,00			0,00	0,0	00
Cápsula + S	Solo	g	0,00		0,0	00			0,00			0,00	0,0	00
Peso da Ág	ua	g	0,00		0,0	00			0,00			0,00	0,0	00
Peso da Cár	psula	g	#N/D		#N	VD		:	#N/E)		#N/D	#N	VD
Peso Solo S	Seco	g	#N/D		#N	VD		:	#N/E)		#N/D	#N	VD
Teor de Umi	idade	%	#N/D		#N	VD			#N/C)	1	#N/D	#N	VD
Val	lores aceitáveis		#ND		#N	VD		:	#N/E)		#N/D	#N	VD
LL =	0,0	LP=	NP		IP=		:	NP	*			RESUMO DOS I	RESULTA	DOS
1,0	G	RÁF	ICO LIMITI	E	DE LI	QÜIDE	Z					ENSAIOS	# Nº	%
0,9												Porcentagem	10	28
ω 0,7 -												acumulada passando na peneira	40	15
0,0 to 0,5 to 0,													200	11
0,4												Limite de Liqüidez	LL	0
0,3 p 0,2 p 0,2												Índice de Plasticidade	IΡ	NP
												Índice de Grupo	IG	0
0,0 10		20	Nu 715 e r δ^{30} d e	Э	40 Golpes	, (60	•	80	100		Classificação	TRB	A-1-a

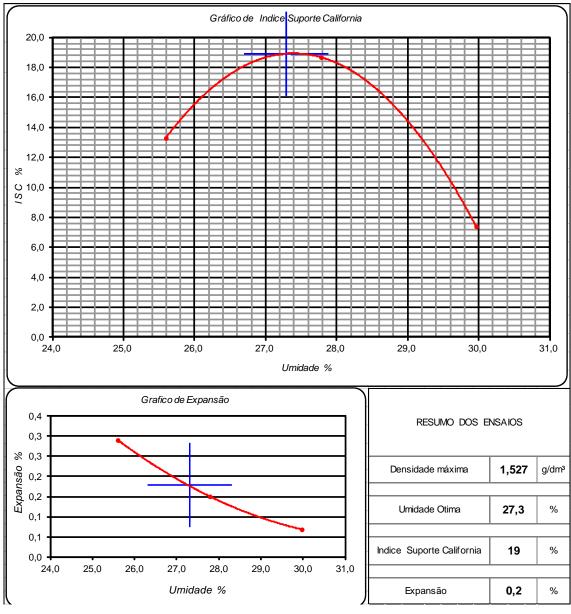
70% argila vermelha 30% BGS

			LIMIT	TE DE LIQ	ÜIDEZ			
Numeros de	Golpes	nº	50	39	30	20	1	0
Cápsula		nº	11	15	13	17	1:	2
Cápsula + S	Solo + Água	g	20,13	21,13	19,86	20,47	21,	00
Cápsula + S	Solo	g	16,54	17,50	16,92	17,36	17,	93
Peso da Ági	ua	g	3,59	3,63	2,94	3,11	3,0)7
Peso da Cár	psula	g	5,04	5,55	6,93	6,46	6,	52
Peso Solo S	Seco	g	11,50	11,95	9,99	10,90	11,	41
Teor de Umi	idade	%	31,2	30,4	29,4	28,5	26	,9
			LIMITE	DE PLAST	ICIDADE			
Cápsula		nº	6	4	3	10	9)
Cápsula + S	Solo + Água	g	12,32	12,00	11,46	12,45	11,	22
Cápsula + S	Solo	g	11,12	10,87	10,51	11,43	10,	20
Peso da Ági	ua	g	1,20	1,13	0,95	1,02	1,0)2
Peso da Cáp	psula	g	5,69	5,96	6,27	6,79	5,4	10
Peso Solo S	Seco	g	5,43	4,91	4,24	4,64	4,8	30
Teor de Umi	idade	%	22,1	23,0	22,4	22,0	21	,3
Val	lores aceitáveis		Sim	Sim	Sim	Sim	Si	m
LL =	29,2	LP=	22,2	IP =	7	RESUMO DOS I	RESULTA	DOS
31,5	(SRÁF	ICO LIMITE	DE LIQÜIDE	z	ENSAIOS	# Nº	%
31,0						Porcentagem	10	87
\$30,0						acumulada passando na peneira	40	59
529,5 929,0						,	200	50
28,5						Limite de Liqüidez	LL	29
928,0 8 927,5 E 27,0						Índice de Plasticidade	IP	7
I =						Índice de Grupo	IG	3
26,5 10		20	Nu ?15 erð ³⁰ de	40 Golpes 6	0 80 100	Classificação	HRB	A-4

50% argila vermelha 50% BGS

		L	IMIT	E DE	LIQ	ÜΙ	DE	Z				
Numeros de Golpes	nº	50		3	9			30		20	10	0
Cápsula	nº	11		1:	5			13		17	1:	2
Cápsula + Solo + Água	g	21,5	58	20,	64		2	0,73		19,86	21,	14
Cápsula + Solo	g	18,3	33	17,	89		1	8,31		17,63	18,	90
Peso da Água	g	3,2	5	2,7	75		2	2,42		2,23	2,2	24
Peso da Cápsula	g	5,0	4	5,5	55		(5,93		6,46	6,5	52
Peso Solo Seco	g	13,2	29	12,	34		1	1,38		11,17	12,	38
Teor de Umidade	%	24,	5	22	,3		2	21,3		20,0	18	,1
		LIMI	TE C	E PL	AST	ΙC	IDA	D				
Cápsula	nº	6		4	ļ	Τ		3		10	9)
Cápsula + Solo + Água	g	9,5	2	10,	63		1	1,06		11,40	10,	85
Cápsula + Solo	g	8,9	3	9,9	91		1	0,32		10,69	10,	02
Peso da Água	g	0,5	9	0,7	72		(0,74		0,71	0,8	33
Peso da Cápsula	g	5,6	9	5,9	96		6	5,27		6,79	5,4	40
Peso Solo Seco	g	3,2	4	3,9	95		4	4,05		3,90	4,6	52
Teor de Umidade	%	18,	2	18	,1		1	18,3		18,2	18	,0
Valores aceitáveis		Sin	า	Si	m			Sim		Sim	Si	m
LL = 21,1	LP=	18,	2	IP=			3	3		RESUMO DOS	RESULTA	DOS
30,0	GRÁFI	CO LIM	ITE D	E LIQ	ÜIDEZ	Z			_	ENSAIOS	# Nº	%
25,0										Parameters	10	70
\$\\ \tilde{\chi} \\ \ch										Porcentagem acumulada passando na peneira	40	48
\$15,0										penella	200	41
ε ^Φ 10,0										Limite de Liqüidez	LL	21
p										Índice de Plasticidade	IP	3
0,0										Índice de Grupo	IG	1
10	20	Num 75 ro	³ 8 e G	olpes	(60		80	100	Classificação	HRB	A-4

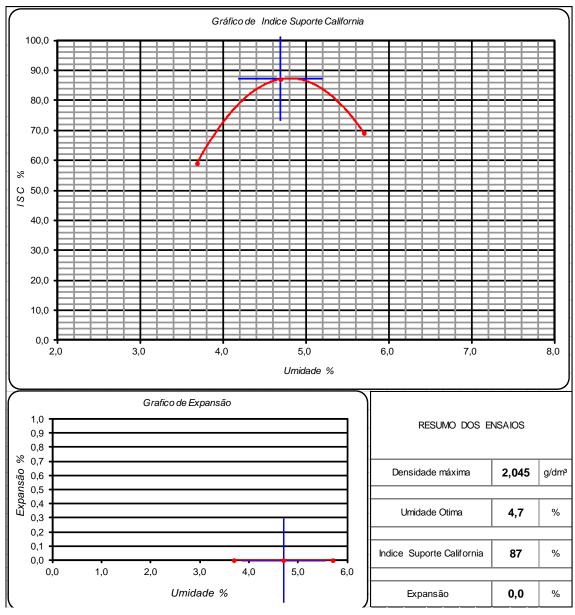
30% argila vermelha 70% BGS


				L	IMIT	E DE	LIC	ΩÜΙ	DE	Z					
Numeros de G	Golpes	nº		50		3	9			30			20	10	0
Cápsula		nº		11		1:	5			13		7	17	1:	2
Cápsula + Sol	lo + Água	g													
Cápsula + Sol	lo	g										7			
Peso da Água	3	g		0,00)	0,0	00			0,00		7	0,00	0,0	00
Peso da Cáps	sula	g		5,04	1	5,5	55			6,93		7	6,46	6,5	52
Peso Solo Seo	co	g		-5,0	4	-5,	55			-6,93	3	7	-6,46	-6,	52
Teor de Umida	ade	%		0,0		0,	0			0,0		7	0,0	0,	0
			L	IMI	TE D	E PL	AS	TIC	ID	A D	E				
Cápsula		nº		0		()			0			0	0)
Cápsula + Sol	lo + Água	g										7			
Cápsula + Sol	lo	g										7			
Peso da Água		g		0,00)	0,0	00			0,00		7	0,00	0,0	00
Peso da Cáps	sula	g		#N/[)	#N	/D		i	#N/C)	7	#N/D	#N	/D
Peso Solo Seo	CO	g		#N/[5	#N	/D		;	#N/C)	7	#N/D	#N	/D
Teor de Umida	ade	%		#N/I)	#N	/D		;	#N/C)	7	#N/D	#N	/D
Valo	ores aceitáveis			#N/[)	#N	/D			#N/C)	7	#N/D	#N	/D
LL =	0,0	LP=		NP		IP=			NP	1			RESUMO DOS F	RESULTA	DOS
1,0	G	RÁFI	СО	LIM	ITE D	E LIQ	ÜIDE	Z					ENSAIOS	# Nº	%
0,9												H			
		=											_	10	37
% 0,8 - & 0,7 -													Porcentagem acumulada passando na	40	13
0,6 0,5													peneira	200	0
ο _ε 0,4												İ	Limite de Liqüidez	LL	0
9 0,3 0,2 0,1													Índice de Plasticidade	IP	NP
0,1												İ	Índice de Grupo	IG	0
0,0		20	Num	75 ro	³⁰ /е G	olpes		60	•	80	100	\int	Classificação	TRB	A-1-a

APÊNDICE D – ENSAIOS DE COMPRESSÃO SIMPLES (ISC)

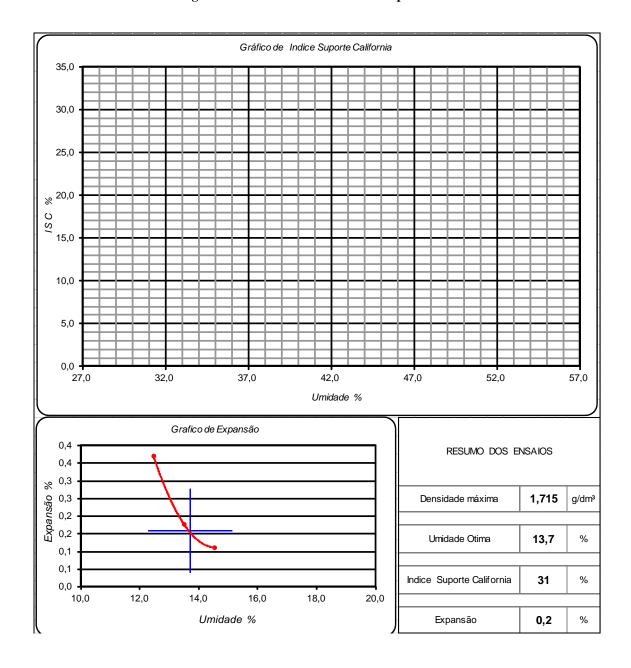
Argila vermelha - ISC

Cili	ndro N	٥:		9	С	ilindro	Nº :		11	C	ilindro	Nº:		8
I	Penetra	ção d	lo 2º ponto	1		Penetr	ação do	3º pont	0		Penetra	ação do	4º ponte)
penetra ção (mm)	Гетро min.		∟eitura nsômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.	Leit extens	tura ômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.		tura sômetro	pressão kg/cm²
0,64	0,5		18	2,0	0,64	0,5	3	36	4,0	0,64	0,5		9	1,0
1,27	1,0		39	4,3	1,27	1,0	7	'1	7,9	1,27	1,0	1	9	2,1
1,91	1,5		60	6,7	1,91	1,5	9	95	10,5	1,91	1,5	3	30	3,3
2,54	2,0		78	8,7	2,54	2,0	1	18	13,1	2,54	2,0	4	10	4,4
3,81	3,0		106	11,8	3,81	3,0	14	45	16,1	3,81	3,0	5	56	6,2
5,08	4,0		126	14,0	5,08	4,0	10	64	18,2	5,08	4,0	7	70	7,8
6,35	5,0		142	15,8	6,35	5,0	18	81	20,1	6,35	5,0	8	32	9,1
7,62	6,0		156	17,3	7,62	6,0	19	96	21,8	7,62	6,0	9	93	10,3
8,89	7,0		166	18,4	8,89	7,0	20	07	23,0	8,89	7,0	1	03	11,4
10,16	8,0		175	19,4	10,16	8,0	2	16	24,0	10,16	8,0	1	10	12,2
12,70	10,0		190	21,1	12,70	10,0		28	25,3	12,70	10,0		19	13,2
	E	xpan		D.,			Expans		D:/			Expans		D.
Data	Но	ra	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)
24/08/15	10:00	0:00	2,00		24/08/1	5 10	0:22:00	2,00		24/08/1	15 10):25:00	2,00	
25/08/15	10:52	2:00	2,13	0,13	25/08/1	5 10	0:52:00	2,05	0,05	25/08/1	15 10):52:00	2,06	0,06
26/08/15	09:4	5:00	2,16	0,16	26/08/1	5 9	:45:00	2,08	0,08	26/08/1	15 9:	:45:00	2,08	0,08
27/08/15	10:47	7:00	2,18	0,18	27/08/1	5 10	0:47:00	2,11	0,11	27/08/1	15 10):47:00	2,08	0,08
28/08/15	10:50	0:00	2,18	0,18	28/08/1	5 10	0:50:00	2,11	0,11	28/08/1	15 10):50:00	2,08	0,08
25,0		5,00 ene (1 a g	T S S S S S S S S S S S S S S S S S S S	12.20	25.0	3,51	5.50 penetraç	7722 8850 mmm	11.43	12,0 10,0 8,0 4,0 2,0 8,0 12,0	3,81 2,54	5.50 ppene trac &		12,70
	RI	ESUM	O DOS P	ONTO DE (COMPACT	AÇÃO			Constar	nte do Ane	el Dinam	nométrico	0	0,111
		2º Po	nto				3º Pon	to				4º Pont	to	
ÍNDICE SUF CALIFOR		5,0	08 13,	3 13	ÍNDK SUPO		5,08	17,3	19	ÍNDI SUPO	RTE	5,08	7,4	7
EXPANSÃ (O (%)	Altu do (02,	0 0,3	EXPAN (%	ISÃO	Altura do CP	73	0,2	EXPAN	ISÃO	Altura do CP	115,9	0,1


Argila vermelha – Gráfico de ISC e Expansão

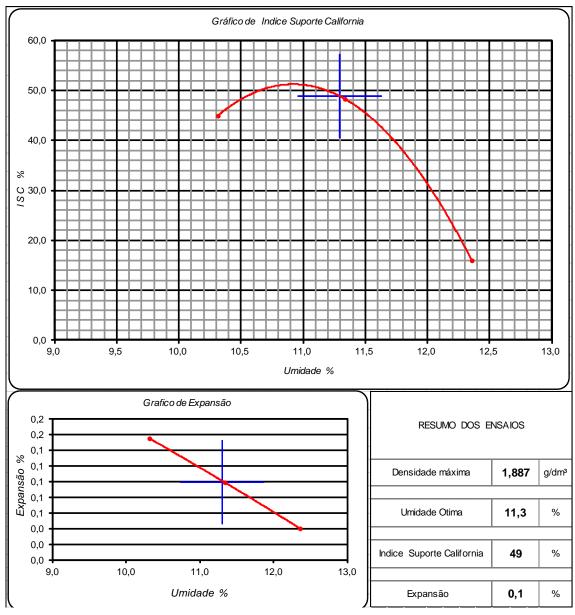
Brita graduada simples (BGS)

C	Cilindro N	1 º :		13	c	ilindro	Nº :		10	c	ilindro	Nº:		1
	Penetra	ação d	do 2º ponto)		Penetr	ação do	3º pont	0		Penetr	ação do	4º ponto)
penetra ção (mm)	Tempo min.	1	Leitura ensômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.	Leit extens	tura ômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.		itura sômetro	pressão kg/cm²
0,64	0,5		70	6,8	0,64	0,5	10	00	9,7	0,64	0,5	7	70	6,8
1,27	1,0		150	14,6	1,27	1,0	2	10	20,4	1,27	1,0	1	60	15,5
1,91	1,5		200	19,4	1,91	1,5	39	95	38,3	1,91	1,5	2	70	26,2
2,54	2,0		320	31,0	2,54	2,0	50	00	48,5	2,54	2,0	3	60	34,9
3,81	3,0		480	46,6	3,81	3,0	67	75	65,5	3,81	3,0	5	30	51,4
5,08	4,0		640	62,1	5,08	4,0	94	45	91,7	5,08	4,0	7	50	72,8
6,35	5,0		836	81,1	6,35	5,0	1.1	45	111,1	6,35	5,0	8	95	86,8
7,62	6,0		947	91,9	7,62	6,0	1.3	340	130,0	7,62	6,0	1.	125	109,1
8,89	7,0		1.191	115,5	8,89	7,0	1.5	550	150,4	8,89	7,0	1.	345	130,5
10,16	8,0		1.308	126,9	10,16	8,0	1.7	' 60	170,7	10,16	8,0	1.	500	145,5
12,70	10,0		1.580	153,3	12,70	10,0	1.9	990	193,0	12,70	10,0	1.	690	163,9
		Expar	nsão	-			Expans	ão				Expans	ão	
Data	Ho	ora	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferenç (mm)
23/09/	15 12:5	0:08	2,00		23/09/	15 12	2:50:00	2,00		23/09/1	5 12	2:50:00	2,00	
24/09/	15 12:5	1:00	2,00	0,00	24/09/	15 12	2:51:00	2,00	0,00	24/09/1	5 12	2:51:00	2,00	0,00
25/09/	15 12:5	3:00	2,00	0,00	25/09/	15 12	2:53:00	2,00	0,00	25/09/1	5 12	2:53:00	2,00	0,00
26/09/	15 12:5	3:00	2,00	0,00	26/09/	15 12	2:53:00	2,00	0,00	26/09/1	5 12	2:53:00	2,00	0,00
27/09/	15 12:5	5:00	2,00	0,00	27/09/	15 12	2:55:00	2,00	0,00	27/09/1	5 12	2:55:00	2,00	0,00
180,0 160,0 140,0 120,0 100,0 80,0 40,0 9	3.51		S c so em mm	11.43	200,0	254	55 8.5 penetraç	7 g g g g g g g g g g g g g g g g g g g	12.70 11,43	180,0 160,0 140,0 120,0 100,0 80,0 60,0 40,0	224	638 pene traç &		12.70
	R			ONTO DE (COMPAC	ΓΑÇÃΟ			Constar	nte do Ane	el Dinam			0,097
ÍNDICE	SLIDODTE	2º Po	onto	_	ÍNIDI	CE.	3º Pont	to	_	ÍNIDI	∩E	4º Pon	to	_
	SUPORTE FORNIA	5,	08 58,	9 59	SUPC	RTE	5,08	87,0	87	SUPO	RTE	5,08	69,0	69
EXDV VIC	ÃO (%)	Alt	ura 123	,0 0,0	EXPAN	ISAO	Altura	110	0,0	EXPAN	ISAO	Altura	94	0,0


Brita graduada simples – Gráfico de ISC e expansão

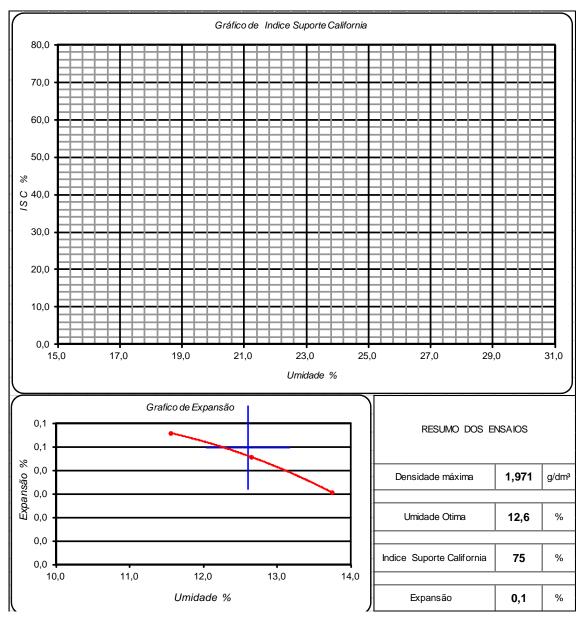
70% argila 30% BGS

С	ilindro	Nº :		1	С	ilindro	Nº:		13	c	Cilindro	Nº:		5
	Peneti	ação	do 2º ponto)		Penetr	ação do	3º pont	0		Penetra	ação do	4º ponto)
penetra ção (mm)	Tempo min.		Leitura tensômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.	Leit extens	tura ômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.		itura sômetro	pressão kg/cm²
0,64	0,5		75	8,3	0,64	0,5	9	7	10,8	0,64	0,5	2	22	2,4
1,27	1,0		125	13,9	1,27	1,0	10	60	17,8	1,27	1,0	3	36	4,0
1,91	1,5		150	16,7	1,91	1,5	18	85	20,5	1,91	1,5	5	54	6,0
2,54	2,0		167	18,5	2,54	2,0	20	04	22,6	2,54	2,0	7	70	7,8
3,81	3,0		193	21,4	3,81	3,0	2:	30	25,5	3,81	3,0	9	99	11,0
5,08	4,0		218	24,2	5,08	4,0	20	60	28,9	5,08	4,0	1	20	13,3
6,35	5,0		243	27,0	6,35	5,0	28	88	32,0	6,35	5,0	1	38	15,3
7,62	6,0		264	29,3	7,62	6,0	3	13	34,7	7,62	6,0	1	54	17,1
8,89	7,0		286	31,7	8,89	7,0	3:	36	37,3	8,89	7,0	1	68	18,6
10,16	8,0		306	34,0	10,16	8,0	30	60	40,0	10,16	8,0	1	80	20,0
12,70	10,0		343	38,1	12,70	10,0	39	96	44,0	12,70	10,0	1	99	22,1
		Expa	insão				Expans	ão				Expans		
Data		lora	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)
03/07/1	15 10:	00:00	2,00		03/07/1	5 10):22:00	2,00		03/07/1	15 10):25:00	2,00	
04/07/1	15 10:	52:00	2,20	0,20	04/07/1	5 10):52:00	2,12	0,12	04/07/1	15 10):52:00	2,06	0,06
05/07/1	15 09:	45:00	2,33	0,33	05/07/1	5 9:	:45:00	2,26	0,26	05/07/1	15 9	:45:00	2,18	0,18
06/07/1	15 10:	47:00	2,40	0,40	06/07/1	5 10	:47:00	2,28	0,28	06/07/1	15 10):47:00	2,21	0,21
07/07/1	15 10:	50:00	2,42	0,42	07/07/1	5 10):50:00	2,29	0,29	07/07/1	15 10):50:00	2,21	0,21
35,0 30,0 30,0 25,0 15,0 10,0	2.54		6.35 o em mm	11.43	50,0 45,0 40,0 35,0 35,0 25,0 20,0 15,0 5,0 8 12	3,51	5.5.8 penetraç	7,620 em mm	11.43	25.0	254	6,35 6,35 pene traç &		12.70
		RESU	MO DOS P	ONTO DE	COMPACT	AÇÃO			Constar	nte do Ane	el Dinam	nométric	0	0,111
,		_	Ponto				3º Pon	to				4º Pon	to	
ÍNDICE S CALIFO			,08 23,	26	ÍNDK SUPO	RTE	5,08	27,4	. 32	ÍNDI SUPO	RTE	5,08	12,6	13
EXPANS/	ÃO (%)	tura CP 113	,4 0,4	EXPAN	ISAO	Altura do CP	163,	8 0,2	EXPAN	ISÃO	Altura do CP	189,4	0,1


70% argila 30% BGS – Gráfico de ISC e expansão

50% argila vermelha 50% BGS

Cilir	ndro N	٥:		12	C	ilindro	Nº:		4	c	ilindro	Nº:		11
F	Penetra	ção d	do 2º ponto			Peneti	ração do	3º pont	to		Penetra	ação do	4º ponte)
cão	empo min.		_eitura ensômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.	Leit extens	tura ômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.		itura sômetro	pressão kg/cm²
0,64	0,5		55	6,1	0,64	0,5	15	59	17,6	0,64	0,5	2	26	2,9
1,27	1,0		138	15,3	1,27	1,0	2	24	24,9	1,27	1,0		50	5,6
1,91	1,5		208	23,1	1,91	1,5	20	67	29,6	1,91	1,5	7	71	7,9
2,54	2,0		265	29,4	2,54	2,0	30	05	33,9	2,54	2,0	9	90	10,0
3,81	3,0		365	40,5	3,81	3,0	38	85	42,7	3,81	3,0	1	22	13,5
5,08	4,0		426	47,3	5,08	4,0	4	40	48,8	5,08	4,0	1	51	16,8
6,35	5,0		478	53,1	6,35	5,0	49	92	54,6	6,35	5,0	1	74	19,3
7,62	6,0		520	57,7	7,62	6,0	5	33	59,2	7,62	6,0	1	94	21,5
8,89	7,0		556	61,7	8,89	7,0	50	88	63,0	8,89	7,0	2	11	23,4
10,16	8,0		584	64,8	10,16	8,0	60	00	66,6	10,16	8,0	2	23	24,8
12,70	10,0		636	70,6	12,70	10,0	6	52	72,4	12,70	10,0	2	41	26,8
	, E	xpan					Expans					Expans		
Data	Но	ra	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)
28/09/15	10:00	0:00	2,00		28/09/1	5 10	0:22:00	2,00		28/09/1	15 10):25:00	2,00	
29/09/15	10:52	2:00	2,13	0,13	29/09/1	5 10	0:52:00	2,06	0,06	29/09/1	15 10):52:00	2,02	0,02
30/09/15	09:4	5:00	2,16	0,16	30/09/1	5 9	:45:00	2,09	0,09	30/09/1	15 9:	:45:00	2,02	0,02
01/10/15	10:47	7:00	2,16	0,16	01/10/1	5 10	0:47:00	2,11	0,11	01/10/1	15 10	:47:00	2,04	0,04
02/10/15	10:50	0:00	2,18	0,18	02/10/1	5 10	0:50:00	2,11	0,11	02/10/1	15 10):50:00	2,05	0,05
70.0 60.0 50.0 40.0 20.0 10.0		5.00 ene (1 a G	8.85 7.85 em mm	11,43 11,43	50.0 50.0 50.0 30.0 20.0 8	3,51	.5.500 penetra ç	.77.852 em mm	17.70 11.43	25,0	3,81	.508 penetraçã		1120 1143
				ONTO DE (COMPACT	AÇÃO	00 Dem		Constar	nte do Ane	el Dinam			0,111
ÍNDICE SUF	ORTE	2º Po		45	ÍNDI		3º Pon		40	ÍNDI		4º Pon		46
CALIFOR		5,0 Altu	ıro	-	SUPO EXPAN	ND NIIA	5,08 Altura	46,3		SUPO EXPAN	ND KIIA	5,08 Altura	15,9	16
EXPANSÃC	(%)	do	115	9 0,2	(%		do CP	110,	8 0,1	(%		do CP	123,4	0,0


50%argila vermelha50% BGS - Gráfico de ISC e expansão

30% argila vermelha 70% BGS

С	ilindro	Nº:			11	C	ilindro	Nº:		12	С	ilindro	Nº :		9
	Pene	ração	do 2º	ponto			Penet	ração do	3º pont	to		Penetr	ação do	4º ponto)
penetra ção (mm)	Temp min.	- 1	Leitur tensôn		pressão kg/cm²	penetra ção (mm)	Tempo min.	Leit extens	ura ômetro	pressão kg/cm²	penetra ção (mm)	Tempo min.		itura sômetro	pressão kg/cm²
0,64	0,5		137		15,2	0,64	0,5	1:	38	15,3	0,64	0,5	1	01	11,2
1,27	1,0		208		23,1	1,27	1,0	20	06	22,9	1,27	1,0	1	73	19,2
1,91	1,5		288		32,0	1,91	1,5	32	28	36,4	1,91	1,5	2	34	26,0
2,54	2,0		366		40,6	2,54	2,0	46	63	51,4	2,54	2,0	2	96	32,9
3,81	3,0		494		54,8	3,81	3,0	60	01	66,7	3,81	3,0	3	99	44,3
5,08	4,0	\top	602		66,8	5,08	4,0	7	13	79,1	5,08	4,0	5	20	57,7
6,35	5,0	\top	734		81,5	6,35	5,0	8	70	96,6	6,35	5,0	6	80	75,5
7,62	6,0	\top	823		91,4	7,62	6,0	1.0	009	112,0	7,62	6,0	7	55	83,8
8,89	7,0	+	898		99,7	8,89	7,0	1.1	70	129,9	8,89	7,0	8	40	93,2
10,16	8,0	+	1.003	 3	111,3	10,16	8,0	1.2	250	138,8	10,16	8,0	9	60	106,6
12,70	10,0	+	1.104		122,5	12,70	10,0	1.3	330	147,6	12,70	10,0	1.	060	117,7
,		Expa	ansão		,	,		Expans	ão	<u> </u>	,		Expans	ão	
Data		Hora		tura nm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)	Data		Hora	Leitura (mm)	Diferença (mm)
29/09/1	15 10	:00:00	2,	00		29/09/	15 1	0:22:00	2,00		29/09/1	5 10	0:25:00	2,00	
30/09/1	15 10	:52:00	2,	03	0,03	30/09/	15 1	0:52:00	2,02	0,02	30/09/1	5 10	0:52:00	2,03	0,03
01/10/1	15 09	:45:00	2,	06	0,06	01/10/	15 9	9:45:00	2,04	0,04	01/10/1	5 9	:45:00	2,04	0,04
02/10/1	15 10	:47:00	2,	06	0,06	02/10/	15 1	0:47:00	2,05	0,05	02/10/1	5 10	0:47:00	2,04	0,04
03/10/1	15 10	:50:00	2,	07	0,07	03/10/	15 1	0:50:00	2,06	0,06	03/10/1	5 10	0:50:00	2,04	0,04
100,0	2.54		7,82 6,35 ação e m		12.70 11.43 10.16	140,0 120,0 100,0 80,0 40,0 20,0 8,0 8,0	2.54	penetraç	7782 em mm	12.70	120,0 120,0 100,0 80,0 40,0 20,0 0,0 0,0 0,0 1,27	254	5 Day penetração		11/30
				OS PO	ONTO DE	COMPAC	ΓΑÇÃΟ		,	Constar	nte do Ane	el Dinan			0,111
ÍNDIOC	N IDO D	_	Ponto		_	ís in	OF	3º Pon	to		ís inst	OF	4º Pon	to	_
ÍNDICE S CALIF	SUPORT ORNIA		5,08	63,4	63	SUPC	RTE	5,08	75,1	75	SUPO	RTE	5,08	54,8	55
EXPANS.	ÃO (%	D)	ltura o CP	115,	9 0,1	EXPAN	ISAO	Altura do CP	115,	9 0,1	EXPAN (%	ISAO	Altura do CP	115,9	0,0

30% argila vermelha 70% BGS – Gráfico de ISC e expansão

ANEXO A - Classificação dos solos - HRB

CLASSIFICAÇÃO DE SOLOS: Sugestão do Highway Research Board-HRB adotada pela AASHTO

	Materiais granulares (35% ou menos passando na peneira nº 200)							Materiais siltosos e argilosos (mais de 35% passando na peneira nº 200)				
Classificação Geral												
	A-1		A-3	A-2				A-4	A-5	A-6	A-7	
Grupo	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-b	A-7-5 / A-7-6	
Peneiração: % que passa:												
Nº 10	50 máx.											
Nº 40	30 máx.	50 máx.	51 mín.									
Nº 200 (p)	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mín.	
Características da fração												
que passa nº 40												
Limite de Liquidez - LL (%)				40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	
Indice de Plasticidade												
IP (%)	6 máx.		NP	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.	
Índice de Grupo	0		0	0		4 máx.		8 máx.	12 máx.	16 máx.	20 máx.	
Materiais que	Pedra Britada		Areia fina Areia e areia silosa			loca ou are	sea ou argilosa		Solos Siltosos		Solos argilosos	
predominam	pedregulho e areia					iiosa ou argiiosa		30103 31110505		Julus ai gilusus		
Comportamento geral	Excelente a bom						Fraco a pobre					
como subleito												

Processo de classificação: Com os dados de laboratório, iniciar a classificação da esquerda para a direita, por eliminação.

O primeiro grupo da esquerda que satisfazer os dados será o grupo procurado.

SOLOS A-7: Se IP ≤ LL -30, será A-7-5; Se IP > LL - 30, será A-7-6.

Índice de Grupo (IG): $IG = 0.2 \cdot \boldsymbol{a} + 0.005 \cdot \boldsymbol{a} \cdot \boldsymbol{c} + 0.01 \cdot \boldsymbol{b} \cdot \boldsymbol{d}$

Onde:

p: teor de silte + argila do solo, ou seja, a porcentagem que passa na peneira nº 200.

a = p - 35 (se p > 75%, adota-se 75 e se p < 35%, adota-se 35) a varia de 0 a 40 e 0,2 : a varia de 0 a 8.

b = p - 15 (se p > 55%, adota-se 55 e se p < 15%, adota-se 15) b varia de 0 a 40 e 0,01 · b · d varia de 0 a 8.

c = LL - 40 (se LL > 60%, adota-se 60 e se LL < 40%, adota-se 40) c varia de 0 a 20 e 0,005 · a · c varia de 0 a 4.

d = IP - 10 (se IP > 30, adota-se 30 e se IP < 10, adota-se 10) d varia de 0 a 20 e 0,01 · b · d varia de 0 a 8.

IG _{min.}= 0 IG _{mix.}= 20

IG - o resultado final obtido deve ser um nº inteiro - aproximação para o nº inteiro acima.

Fonte: MANUAL DE TÉCNICAS DE PAVIMENTAÇÃO, 2015.

ANEXO B - Preparação de amostra para ensaio de caracterização

Fonte: DNER 041/94